-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_wa_model_parameter.py
86 lines (79 loc) · 2.44 KB
/
extract_wa_model_parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "numpy",
# "pandas",
# ]
# ///
# Read all .xml files from a given directory
import os
import traceback
import numpy as np
import pandas as pd
def merge_models(dir_input):
dir = os.path.dirname(__file__)
dirname = os.path.join(dir, dir_input)
metadata = []
dfs = []
header = ''
max_var = 0
results = {}
print(f'{len(os.listdir(dirname))} files found, start reading')
for filename in os.listdir(dirname):
if not filename.endswith('.xml'):
continue
# read first file header
if not header:
with open(os.path.join(dirname, filename)) as infile:
header = '\n'.join(infile.readlines()[:4])
# read analytes
try:
model_xml = pd.read_xml(os.path.join(dirname, filename), xpath='//ModelData/model/analyte')
except Exception as e:
traceback.print_exc()
raise e
# read model variance
try:
x = pd.read_xml(os.path.join(dirname, filename), xpath='//ModelData/model')
except Exception as e:
traceback.print_exc()
raise e
model_xml['filename'] = filename
results[filename] = {}
grouped = model_xml.groupby('filename')
results[filename]['signal'] = grouped['signal'].sum()[0]
results[filename]['filename'] = filename
results[filename]['variance'] = x.variance.mean()
results[filename]['max_variance'] = x.variance.max()
results[filename]['min_variance'] = x.variance.min()
for i in ['mw', 's', 'D', 'f', 'f_f0', 'vbar20']:
if i == 'vbar20':
multiplier = 10
elif i == 'D':
multiplier = 1e6
elif i == 's':
multiplier = 1e13
elif i == 'mw':
multiplier = 1
elif i == 'f':
multiplier = 1e8
else:
multiplier = 1
model_xml[i] = model_xml[i] * multiplier
value = model_xml.groupby('filename').apply(lambda y: np.average(y[i], weights=y['signal']))
results[filename][f'wa_{i}'] = value[0]
# compute the normal average
average = model_xml.groupby('filename')[i].mean()
results[filename][f'avg_{i}'] = average[0]
# compute the standard deviation
results[filename][f'{i}_std'] = model_xml.groupby('filename')[i].std()[0]
# save results to a file
results_df = pd.DataFrame(results).T
results_df.to_csv(os.path.join(dirname, 'results.csv'))
# calculate the weight average and standard deviation of every column except 'analyte name'
merge_models(r"7169_L5%IT%")
merge_models(r"7169_L5%MC%")
merge_models(r"7168_L5%IT%")
merge_models(r"7168_L5%MC%")
merge_models(r"7155_L5%IT%")
merge_models(r"7155_L5%MC%")