-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
145 lines (121 loc) · 4.36 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Note: To use the 'upload' functionality of this file, you must:
# $ pip install twine
import io
import os
import sys
from shutil import rmtree
from setuptools import find_packages, setup, Command
# Package meta-data.
NAME = "pytorch_segmentation_models_trainer"
DESCRIPTION = "Image segmentation models training of popular architectures."
URL = "https://github.com/phborba/pytorch_segmentation_models_trainer"
EMAIL = "philipeborba@gmail.com"
AUTHOR = "Philipe Borba"
REQUIRES_PYTHON = ">=3.6.0"
VERSION = "0.17.0"
# The rest you shouldn't have to touch too much :)
# ------------------------------------------------
# Except, perhaps the License and Trove Classifiers!
# If you do change the License, remember to change the Trove Classifier for that!
here = os.path.abspath(os.path.dirname(__file__))
# What packages are required for this module to be executed?
try:
with open(os.path.join(here, "requirements.txt"), encoding="utf-8") as f:
REQUIRED = []
DEP_LINKS = []
for i in f.read().split("\n"):
if "git+" in i:
DEP_LINKS.append(i)
else:
REQUIRED.append(i)
except:
REQUIRED = []
DEP_LINKS = []
# What packages are optional?
EXTRAS = {"tests": ["pytest", "scikit-image", "parameterized"]}
# Import the README and use it as the long-description.
# Note: this will only work if 'README.md' is present in your MANIFEST.in file!
try:
with io.open(os.path.join(here, "README.md"), encoding="utf-8") as f:
long_description = "\n" + f.read()
except FileNotFoundError:
long_description = DESCRIPTION
# Load the package's __version__.py module as a dictionary.
about = {}
if not VERSION:
with open(os.path.join(here, NAME, "__version__.py")) as f:
exec(f.read(), about)
else:
about["__version__"] = VERSION
class UploadCommand(Command):
"""Support setup.py upload."""
description = "Build and publish the package."
user_options = []
@staticmethod
def status(s):
"""Prints things in bold."""
print(s)
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
try:
self.status("Removing previous builds...")
rmtree(os.path.join(here, "dist"))
except OSError:
pass
self.status("Building Source and Wheel (universal) distribution...")
os.system("{0} setup.py sdist bdist_wheel --universal".format(sys.executable))
self.status("Uploading the package to PyPI via Twine...")
os.system("twine upload dist/*")
self.status("Pushing git tags...")
os.system("git tag v{0}".format(about["__version__"]))
os.system("git push --tags")
sys.exit()
# Where the magic happens:
setup(
name=NAME,
version=about["__version__"],
description=DESCRIPTION,
long_description=long_description,
long_description_content_type="text/markdown",
author=AUTHOR,
author_email=EMAIL,
python_requires=REQUIRES_PYTHON,
url=URL,
packages=find_packages(exclude=("tests", "docs", "images", "examples")),
entry_points={
"console_scripts": [
"pytorch-smt=pytorch_segmentation_models_trainer.main:entry"
]
},
# If your package is a single module, use this instead of 'packages':
# py_modules=['mypackage'],
# entry_points={
# 'console_scripts': ['mycli=mymodule:cli'],
# },
install_requires=REQUIRED,
extras_require=EXTRAS,
dependency_links=DEP_LINKS,
include_package_data=True,
license="GPL",
classifiers=[
# Trove classifiers
# Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Operating System :: OS Independent",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: GNU General Public License v2 (GPLv2)",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
],
keywords="pytorch hydra semantic-segmentation deep-learning deep learning",
# $ setup.py publish support.
cmdclass={"upload": UploadCommand},
)