-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
232 lines (175 loc) · 8.4 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
Title: analysis.py
Date: November 2023
"""
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf # for regression with R syntax
PATH = '/Users/danya/Documents/GitHub/personal github/2023-chi-mayor-election/data'
############################## PREP ANALYSIS DATA #############################
def load_analysis_data():
'''Load demographic and election data & perform analysis-specific cleaning
Returns
-------
demo_vote: data frame to be used for analysis
'''
demo_vote = pd.read_csv(os.path.join(PATH,'demo_vote_data.csv'))
# add binary column for if johnson won the ward
demo_vote['johnson_won'] = np.where(demo_vote['winner'] == 'Johnson', 1, 0)
# add column for percent black
demo_vote['Proportion Black'] = demo_vote['Black or African American'] / demo_vote['Total Pop (Race)']
return demo_vote
demo_vote = load_analysis_data()
############################## LINEAR REGRESSION ##############################
# renaming variables of interest to comply with smf format/syntax
demo_vote = demo_vote.rename(columns={'Proportion Non-White':'perc_non_white',
'Propotion Voting Pop 18-29':'perc_under_30',
'Proportion Rent Burdened':'perc_rent_burdened'})
# regression 1
# y = johnson vote share
# x = % non-white, % 18-29, % rent burdened
def regression(df, y, x1, x2, x3 = ''):
if x3 != '':
reg = smf.ols(f'{y} ~ {x1} + {x2} + {x3}', data = df)
else:
reg = smf.ols(f'{y} ~ {x1} + {x2}', data = df)
result = reg.fit()
return result.summary()
reg1 = regression(demo_vote,'proportion_johnson','perc_non_white','perc_under_30','perc_rent_burdened')
print(reg1)
# robustness check: are perc_non_white and perc_rent_burdened multicollinear?
# run regression without perc_non_white
reg2 = regression(demo_vote,'proportion_johnson','perc_under_30','perc_rent_burdened')
print(reg2)
# run regression without perc_rent_burdened
reg3 = regression(demo_vote,'proportion_johnson','perc_under_30','perc_non_white')
print(reg3)
############################## NEAREST NEIGHBORS ##############################
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# subset relevant columns to be used in the prediction algorithm
analysisData = demo_vote[['ward_id', 'Proportion White', 'Proportion Black',
'Proportion Rent Burdened', 'Proportion Voting Pop 18-29',
'johnson_won']].dropna().set_index('ward_id')
# split analysis data into 70% training and 30% testing
X_train, X_test, y_train, y_test = train_test_split(analysisData[['Proportion White',
'Proportion Black',
'Proportion Rent Burdened',
'Proportion Voting Pop 18-29']],
analysisData['johnson_won'],
stratify = analysisData['johnson_won'],
train_size = 0.7, random_state = 20231128)
# examine number of observations in each partition
print('=== All Observations ===')
print(analysisData['johnson_won'].count())
print('=== Training Partition ===')
print(y_train.count())
print('=== Testing Partition ===')
print(y_test.count())
# check if the proportions of y label (johnson_won) are maintained in the partitions
# proportions of johnson vs vallas should be equal in training and testing partitions bc we stratified by johnson_won
print('=== All Observations ===')
print(analysisData['johnson_won'].value_counts(normalize = True))
print('=== Training Partition ===')
print(y_train.value_counts(normalize = True))
print('=== Testing Partition ===')
print(y_test.value_counts(normalize = True))
# create function to calculate the misclassification rate
# we will classify a ward as voting for johnson if the proportion of johnson_won = 1 among its neighbors
# is greater than or equal to .5
# we will deem a ward as misclassified if its predicted winner does not match its actual winner
def nbrs_metric (class_prob, y_obs):
'''Calculate classification metrics
Parameters
----------
class_prob: a dataframe of predicted probability for target categories
y_obs: a series of observed target categories
Returns
-------
mce: misclassificatinon error - proportion of observations that are misclassified
'''
nbrs_pred = np.where(class_prob[1].to_numpy() > .5, 1, 0)
mce = np.mean(np.where(nbrs_pred == y_obs, 0, 1))
return (mce)
def find_k(max_k):
''' Find the optimal number of neighbors among range of 2-10
Parameters
----------
None
Returns
-------
k_result_df: a data frame with misclassification errors for each k value
'''
neigh_choice = range(2,max_k,1)
k_result = []
for k in neigh_choice:
neigh = KNeighborsClassifier(n_neighbors = k, metric = 'euclidean')
nbrs = neigh.fit(X_train, y_train)
cprob_train = pd.DataFrame(nbrs.predict_proba(X_train), columns = [0,1])
mce_train = nbrs_metric(cprob_train, y_train)
cprob_test = pd.DataFrame(nbrs.predict_proba(X_test), columns = [0,1])
mce_test = nbrs_metric(cprob_test, y_test)
k_result.append([k, mce_train, mce_test])
k_result_df = pd.DataFrame(k_result, columns = ['k', 'MCE_Train', 'MCE_Test'])
return k_result_df
k_result_df = find_k(11)
# plot misclassification rate
# from the plot we can see that 4 neighbors yields the lowest misclassification
# rate in the testing data
def plot_k(df, max_k):
neigh_choice = range(2,max_k,1)
plt.subplots(1, figsize = (10,6), dpi = 200)
plt.plot(df['k'], df['MCE_Train'], marker = 'o', label = 'Training')
plt.plot(df['k'], df['MCE_Test'], marker = '^', label = 'Testing')
plt.title('Johnson_Won-Stratified Random Partition (70/30)')
plt.xlabel('Number of Neighbors')
plt.ylabel('Misclassification Rate')
plt.xticks(neigh_choice)
plt.grid(axis = 'both')
plt.legend()
return plt.show()
plot_k = plot_k(k_result_df, 11)
#
def predict_winners():
'''Use nearest neighbors algorithm to predict winner of each ward
Returns
-------
prediction_df: data frame with predicted probabilities for each candidate and comparison of actual vs predicted
'''
# create the final model with k = 4 and using standard euclidean distance metric
knn = KNeighborsClassifier(n_neighbors = 4, metric = 'euclidean')
# train the model
nbrs_knn = knn.fit(X_train, y_train)
# use model to predict winner for the wards in the testing data
prediction = pd.DataFrame(nbrs_knn.predict_proba(X_test),
columns = ['prob_vallas','prob_johnson'],
index = X_test.index.copy())
prediction['predicted_winner'] = np.where(prediction['prob_johnson'] > prediction['prob_vallas'], 1, 0)
# merge original data with predictions to compare actual vs predicted winner
prediction_df = prediction.merge(y_test, how = 'left', on = 'ward_id')
prediction_df.rename(columns = {'johnson_won':'actual_winner'}, inplace = True)
prediction_df['correct?'] = np.where(prediction_df['predicted_winner'] == prediction_df['actual_winner'], 1, 0)
return prediction_df
prediction_df = predict_winners()
# find the nearest neighbors of a specific ward
def find_neighbors(ward_number):
'''Find the neareast neighbors of a ward
Parameters
----------
ward_number: the number of a specific ward (integer from 1 to 50)
Returns
-------
ward_neighbors: a dataframe of the 4 nearest neighbors of that ward
'''
knn = KNeighborsClassifier(n_neighbors = 4, metric = 'euclidean')
nbrs_knn = knn.fit(X_train, y_train)
i = ward_number - 1
focal = analysisData.iloc[[i]][['Proportion White', 'Proportion Black',
'Proportion Rent Burdened', 'Proportion Voting Pop 18-29']]
myNeighborDistance, myNeighborPosition = knn.kneighbors(focal, return_distance = True)
neighbors_supervised = [X_train.iloc[i] for i in myNeighborPosition][0]
ward_neighbors = analysisData.iloc[neighbors_supervised.index]
return ward_neighbors
find_neighbors(3)