-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis_utils.py
383 lines (322 loc) · 14.1 KB
/
analysis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import pandas as pd
from matplotlib import pyplot as plt
import os
import numpy as np
def process_df(train_df, val_df, test_df, params):
loss_metrics = []
acc_metrics = []
for group_idx in range(params['n_groups']):
loss_metrics.append(f'avg_loss_group:{group_idx}')
acc_metrics.append(f'avg_acc_group:{group_idx}')
# robust acc
for df in [train_df, val_df, test_df]:
df['robust_loss'] = np.max(df.loc[:, loss_metrics], axis=1)
df['robust_acc'] = np.min(df.loc[:, acc_metrics], axis=1)
def process_df_waterbird9(train_df, val_df, test_df, params):
process_df(train_df, val_df, test_df, params)
loss_metrics = []
acc_metrics = []
for group_idx in range(params['n_groups']):
loss_metrics.append(f'avg_loss_group:{group_idx}')
acc_metrics.append(f'avg_acc_group:{group_idx}')
ratio = params['n_train'] / np.sum(params['n_train'])
val_df['avg_acc'] = val_df.loc[:, acc_metrics] @ ratio
val_df['avg_loss'] = val_df.loc[:, loss_metrics] @ ratio
test_df['avg_acc'] = test_df.loc[:, acc_metrics] @ ratio
test_df['avg_loss'] = test_df.loc[:, loss_metrics] @ ratio
def sanitize_df(df):
"""
Fix a results df for problems arising from resuming.
"""
# Remove stray epoch/batches
# duplicates = df.duplicated(
# subset=['epoch', 'batch'],
# keep='last')
# df = df.loc[~duplicates, :]
# df.index = np.arange(len(df))
df = df.groupby(['epoch', 'batch']).mean(numeric_only=True).reset_index()
# if np.sum(duplicates) > 0:
# print(f"Removed {np.sum(duplicates)} duplicates from epochs {np.unique(df.loc[duplicates, 'epoch'])}")
# Make sure epoch/batch is increasing monotonically
prev_epoch = -1
prev_batch = -1
last_batch_in_epoch = -1
for i in range(len(df)):
try:
epoch, batch = df.loc[i, ['epoch', 'batch']].astype(int)
except:
print (i, epoch, batch, len(df))
assert (
((prev_epoch == epoch) and (prev_batch < batch)) or
((prev_epoch == epoch - 1))
)
if prev_epoch == epoch - 1:
assert ((last_batch_in_epoch == -1) or (last_batch_in_epoch == prev_batch))
last_batch_in_epoch = prev_batch
prev_epoch = epoch
prev_batch = batch
return df
def load_log(run_dir):
dfs = []
for split in ['train', 'val', 'test']:
log_path = os.path.join(run_dir, 'logs', f'{split}.csv')
if os.path.exists(log_path):
df = sanitize_df(
pd.read_csv(log_path))
dfs.append(df)
else:
print(f'Could not find {log_path}, try again')
log_path = os.path.join(run_dir, f'{split}.csv')
if os.path.exists(log_path):
print(f'Found!')
df = sanitize_df(
pd.read_csv(log_path))
dfs.append(df)
else:
print(f'Could not find {log_path}')
dfs.append(None)
return tuple(dfs)
def get_accs_for_epoch_across_batches(df, epoch):
n_groups = 1 + np.max([int(col.split(':')[1]) for col in df.columns if col.startswith('avg_acc_group')])
indices = df['epoch'] == epoch
accs = np.zeros(n_groups)
total_counts = np.zeros(n_groups)
correct_counts = np.zeros(n_groups)
for i in np.where(indices)[0]:
for group in range(n_groups):
total_counts[group] += df.loc[i, f'processed_data_count_group:{group}']
correct_counts[group] += np.round(
df.loc[i, f'avg_acc_group:{group}'] * df.loc[i, f'processed_data_count_group:{group}'])
accs = correct_counts / total_counts
robust_acc = np.min(accs)
avg_acc = accs @ total_counts / np.sum(total_counts)
return avg_acc, robust_acc
def print_accs(dfs, params=None,
epoch_to_eval=None, print_avg=False, output=True,
splits=['train', 'val', 'test'],
early_stop=True):
"""
Input: dictionary of dfs with keys 'val', 'test'
This takes the minority group 'n' for calculating stdev,
which is conservative.
Since clean val/test acc for waterbirds is estimated from a val/test set with a different distribution, there's probably a bit more variability,
but this is minor since the overall n is high.
"""
for split in splits:
assert split in dfs
early_stopping_epoch = np.argmax(dfs['val']['robust_acc'].values)
epochs = []
assert early_stop or (epoch_to_eval is not None)
if early_stop:
epochs += [('early stop at epoch', 'early_stopping', early_stopping_epoch)]
if epoch_to_eval is not None:
epochs += [('epoch', 'epoch_to_eval', epoch_to_eval)]
metrics = [('Robust', 'robust_acc')]
if print_avg:
metrics += [('Avg', 'avg_acc')]
results = {}
for metric_str, metric in metrics:
results[metric] = {}
for split in splits:
for epoch_print_str, epoch_save_str, epoch in epochs:
if epoch not in dfs[split]['epoch'].values:
if output:
print(f"{metric_str} {split:<5} acc ({epoch_print_str} {epoch_to_eval}): Not yet run")
else:
if split == 'train':
avg_acc, robust_acc = get_accs_for_epoch_across_batches(dfs[split], epoch)
if metric == 'avg_acc':
acc = avg_acc
elif metric == 'robust_acc':
acc = robust_acc
else:
idx = np.where(dfs[split]['epoch'] == epoch)[0][-1] # Take the last batch in this epoch
acc = dfs[split].loc[idx, metric]
if split not in results[metric]:
results[metric][split] = {}
if params is None:
if output:
print(f"{metric_str} {split:<5} acc ({epoch_print_str} {epoch}): "
f"{acc*100:.1f}")
else:
n_str = f'n_{split}'
minority_n = np.min(params[n_str])
total_n = np.sum(params[n_str])
if metric == 'robust_acc':
n = minority_n
elif metric == 'avg_acc':
n = total_n
stddev = np.sqrt(acc * (1 - acc) / n)
results[metric][split][epoch_save_str] = (acc, stddev)
if output:
print(f"{metric_str} {split:<5} acc ({epoch_print_str} {epoch}): "
f"{acc*100:.1f} ({stddev*100:.1f})")
return results
def print_best_adj_wd_accs(dfs, params, epoch_to_eval=None, print_avg=False,
splits=['train', 'val', 'test']):
robust_accs = []
wd = params['adjusted_wd']
for adj in params['adj_list']:
adj_dfs = dfs[adj][wd]
if epoch_to_eval is None:
epoch = np.argmax(adj_dfs['val']['robust_acc'].values)
else:
epoch = epoch_to_eval
robust_accs.append(adj_dfs['val'].loc[epoch,'robust_acc'])
best_adj = params['adj_list'][np.argmax(robust_accs)]
print(f'================== DRO, adj={best_adj} ================== ')
return print_accs(
dfs[best_adj][wd],
params,
epoch_to_eval=epoch_to_eval,
print_avg=print_avg,
splits=splits)
def print_best_adj_accs(dfs, params, epoch_to_eval=None, print_avg=False,
splits=['train', 'val', 'test']):
robust_accs = []
wd = params['adjusted_wd']
for adj in params['adj_list']:
adj_dfs = dfs[adj][wd]
if epoch_to_eval is None:
epoch = np.argmax(adj_dfs['val']['robust_acc'].values)
else:
epoch = epoch_to_eval
robust_accs.append(adj_dfs['val'].loc[epoch,'robust_acc'])
best_adj = params['adj_list'][np.argmax(robust_accs)]
print(f'=== with adj={best_adj}')
return print_accs(
dfs[best_adj][wd],
params,
epoch_to_eval=epoch_to_eval,
print_avg=print_avg,
splits=splits)
def print_best_wd_accs(dfs, params, epoch_to_eval=None, print_avg=False,
splits=['train', 'val', 'test']):
robust_accs = []
for wd in params['wd']:
if epoch_to_eval is None:
epoch = np.argmax(dfs[wd]['val']['robust_acc'].values)
else:
epoch = epoch_to_eval
robust_accs.append(dfs[wd]['val'].loc[epoch,'robust_acc'])
best_wd = params['wd'][np.argmax(robust_accs)]
print(f'=== wd={best_wd}')
return print_accs(
dfs[best_wd],
params,
epoch_to_eval=epoch_to_eval,
print_avg=print_avg,
splits=splits)
def plot_adj_sweep(dfs, params, acc=False, ylim=None, plot_train=True, plot_val=True):
fig, ax = plt.subplots(1, len(params['adj_list']),
figsize=(20,4),
sharey=True, sharex=True)
for i_adj,adj in enumerate(params['adj_list']):
if acc:
plotted_col='avg_acc'
else:
plotted_col='avg_loss'
wd = params['adjusted_wd']
legend = []
for group_idx in range(params['n_groups']):
df = dfs[adj][wd]
if df is None:
continue
plot_train_val_losses(ax[i_adj], df['train'], df['val'],
f'{plotted_col}_group:{group_idx}', f'C{group_idx}',
title=f'adj={adj}', plot_train=plot_train, plot_val=plot_val)
legend.append(f'group {group_idx}')
legend.append('_no_legend')
ax[i_adj].legend(legend)
ax[i_adj].set_xlabel(plotted_col)
fig.tight_layout()
ax[i_adj].set_ylim(ylim)
def plot_train_val_losses(ax, train_df, val_df, y_cols, color, title, x_column=None, x_cumsum=False,
plot_train=True, plot_val=True):
assert plot_train or plot_val
df = train_df.merge(val_df, on='epoch', suffixes=['_train','_val'])
if isinstance(y_cols, tuple):
assert(len(y_cols) == 2)
else:
y_cols = (y_cols,)
val_col = y_cols[0] + '_val'
train_col = y_cols[0] + '_train'
mask = np.invert(np.isnan(df[val_col]))
mask = df[val_col] > 0
mask = np.invert(np.isnan(df[train_col]))
mask = df[train_col] > 0
batches_per_epoch = df.shape[0] / np.max([df["epoch"].values])
print("BPE", batches_per_epoch)
print("BE", df.shape[0] / batches_per_epoch)
if x_column is None:
x = np.arange(df.shape[0]) / batches_per_epoch
xlabel = 'batch'
else:
x = df[x_column].values
if x_cumsum:
x = np.cumsum(x)
xlabel = x_column
if plot_val: ax.plot(x[mask], df[val_col][mask], color=color, label=val_col)
if plot_train: ax.plot(x[mask], df[train_col][mask], linestyle='--', color=color, label=train_col, alpha=0.5)
ax.set_xlabel(xlabel)
ax.set_ylabel(y_cols[0])
ax.grid(linestyle='--')
ax.set_title(title)
if len(y_cols) > 1:
ax2 = ax.twinx()
val_col = y_cols[1] + '_val'
train_col = y_cols[1] + '_train'
color = 'C' + str(int(color[1]) + 2)
if plot_val: ax2.plot(x[mask], df[val_col][mask], color=color, label=val_col)
if plot_train: ax2.plot(x[mask], df[train_col][mask], linestyle='--', color=color, label=train_col, alpha=0.5)
ax2.set_xlabel(xlabel)
ax2.set_ylabel(y_cols[1])
ax2.set_ylim((0, 1))
ax2.set_title(title)
def scatter_train_vs_val(ax, train_df, val_df, train_column, val_column, train_cumsum=False, val_xumsum=False,
color='C0', title=''):
train_df = train_df.groupby('epoch').mean().reset_index()
df = train_df.merge(val_df, on='epoch', suffixes=['_train','_val'])
ax.scatter(df[train_column+"_train"], df[val_column+'_val'], color=color, alpha=0.5)
ax.set_xlabel(train_column+"_train")
ax.set_ylabel(val_column+"_val")
def compute_stats_last_epoch(train_df, val_df, column, epoch_column='epoch'):
last_epoch = max(val_df[epoch_column])
train_loss = train_df[train_df[epoch_column]==last_epoch][column].mean()
val_loss = val_df[val_df[epoch_column]==last_epoch][column].values
return train_loss, val_loss
def scatter_train_vs_val_last_epoch(ax, train_df, val_df, train_column, val_column,
epoch_column='epoch', color='C0'):
last_epoch = max(val_df[epoch_column])
train_loss = train_df[train_df[epoch_column]==last_epoch][train_column].mean()
val_loss = val_df[val_df[epoch_column]==last_epoch][val_column].values
ax.scatter(train_loss, val_loss, color=color, alpha=0.5)
ax.set_xlabel(train_column+"_train")
ax.set_ylabel(val_column+"_val")
def scatter_gen_gap_last_epoch(ax, x, train_df, val_df, column,
epoch_column='epoch', color='C0'):
last_epoch = max(val_df[epoch_column])
train_loss = train_df[train_df[epoch_column]==last_epoch][column].mean()
val_loss = val_df[val_df[epoch_column]==last_epoch][column].values
ax.scatter(x, val_loss - train_loss, color=color, alpha=0.5)
ax.set_ylabel("generalization gap")
def scatter_train_and_val_last_epoch(ax, x, train_df, val_df, column,
epoch_column='epoch', color='C0'):
last_epoch = max(val_df[epoch_column])
train_loss = train_df[train_df[epoch_column]==last_epoch][column].mean()
val_loss = val_df[val_df[epoch_column]==last_epoch][column].values
ax.scatter(x, train_loss, color=color, facecolors='none')
ax.scatter(x, val_loss, color=color, alpha=0.5)
ax.set_xlabel(column)
def load_log_old(run_dir):
names = ['train_loss', 'train_acc',
'train_loss_0', 'train_loss_1', 'train_loss_2', 'train_loss_3',
'val_loss', 'val_acc',
'val_loss_0', 'val_loss_1', 'val_loss_2', 'val_loss_3',
'val_acc_0', 'val_acc_1', 'val_acc_2', 'val_acc_3']
log_path = os.path.join(run_dir, 'log', 'log.csv')
try:
df = pd.read_csv(log_path, names=names, header=0)
except pd.errors.ParserError:
df = pd.read_csv(log_path, names=names[:-4], header=0)
return df