-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsupport.py
141 lines (121 loc) · 5.22 KB
/
support.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import requests
from os.path import join
import matplotlib.pyplot as plt
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator, img_to_array, array_to_img, load_img
from keras.applications import xception
from mpl_toolkits.axes_grid1 import ImageGrid
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def split_train_val(labels, num_classes, seed=1234):
selected_breed_list = list(labels.groupby('breed').count().sort_values(by='id', ascending=False).head(num_classes).index)
labels = labels.loc[labels['breed'].isin(selected_breed_list)].reset_index()
labels['target'] = 1
labels['rank'] = labels.groupby('breed').rank()['id']
labels_pivot = labels.pivot('id', 'breed', 'target').reset_index().fillna(0)
np.random.seed(seed=seed)
rnd = np.random.random(len(labels))
train_idx = rnd < 0.8
valid_idx = rnd >= 0.8
y_train = labels_pivot[selected_breed_list].values
ytr = y_train[train_idx]
yv = y_train[valid_idx]
return (train_idx, valid_idx, ytr, yv, labels, selected_breed_list)
def read_img(img_id, data_dir, train_or_test, size):
"""Read and resize image.
# Arguments
img_id: string
train_or_test: string 'train' or 'test'.
size: resize the original image.
# Returns
Image as numpy array.
"""
img = image.load_img(join(data_dir, train_or_test, '%s.jpg' % img_id), target_size=size)
img = image.img_to_array(img)
return img
def show_images(num_classes, labels, data_dir):
j = int(np.sqrt(num_classes))
i = int(np.ceil(1. * num_classes / j))
fig = plt.figure(1, figsize=(16, 16))
grid = ImageGrid(fig, 111, nrows_ncols=(i, j), axes_pad=0.05)
for i, (img_id, breed) in enumerate(labels.loc[labels['rank'] == 1, ['id', 'breed']].values):
ax = grid[i]
img = read_img(img_id, data_dir, 'train', (224, 224))
ax.imshow(img / 255.)
ax.text(10, 200, 'LABEL: %s' % breed, color='k', backgroundcolor='w', alpha=0.8)
ax.axis('off')
plt.show()
def data_augmentation_example(input_path, count):
# load image to array
image = img_to_array(load_img(input_path))
# reshape to array rank 4
image = image.reshape((1,) + image.shape)
# let's create infinite flow of images
train_datagen = ImageDataGenerator(rotation_range=45,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.25,
horizontal_flip=True,
fill_mode='nearest')
images_flow = train_datagen.flow(image, batch_size=1)
plt.figure(figsize=(9,9))
for idx, new_images in enumerate(images_flow):
if idx < count:
plt.subplot(330 + 1 + idx)
new_image = array_to_img(new_images[0], scale=True)
plt.imshow(new_image)
plt.axis('off')
else:
plt.show()
break
def prediction_from_url(url, model, selected_breed_list):
test_image_path = '/tmp/test.jpg'
response = requests.get(url)
if response.status_code == 200:
with open(test_image_path, 'wb') as f:
f.write(response.content)
img = read_img('test', '/', 'tmp', (224, 224))
x = xception.preprocess_input(np.expand_dims(img.copy(), axis=0))
preds = model.predict(x)
pred_idx = np.argmax(preds, axis=1)[0]
plt.title('Prediction: %s (%.2f)' % (selected_breed_list[pred_idx] , preds[0][pred_idx]*100))
plt.imshow(img / 255.)
plt.axis('off')
plt.show()
def print_confusion_matrix(confusion_matrix, class_names, figsize = (10,7), fontsize=14):
"""Prints a confusion matrix, as returned by sklearn.metrics.confusion_matrix, as a heatmap.
Arguments
---------
confusion_matrix: numpy.ndarray
The numpy.ndarray object returned from a call to sklearn.metrics.confusion_matrix.
Similarly constructed ndarrays can also be used.
class_names: list
An ordered list of class names, in the order they index the given confusion matrix.
figsize: tuple
A 2-long tuple, the first value determining the horizontal size of the ouputted figure,
the second determining the vertical size. Defaults to (10,7).
fontsize: int
Font size for axes labels. Defaults to 14.
Returns
-------
matplotlib.figure.Figure
The resulting confusion matrix figure
FROM: https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823
"""
df_cm = pd.DataFrame(
confusion_matrix, index=class_names, columns=class_names,
)
fig = plt.figure(figsize=figsize)
try:
heatmap = sns.heatmap(df_cm, annot=True, fmt="d")
except ValueError:
raise ValueError("Confusion matrix values must be integers.")
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=fontsize)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=fontsize)
plt.title('Confusion Matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')
return fig