-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
163 lines (142 loc) · 5.8 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
@author: Jérémie Gaffarel & Rudi Smits - TU Delft - Faculty of Aerospace Engineering - BSc 2 (2018-2019)
This module is meant to filter the noisy measurements of MAVs, by the mean of an Extended Kalman FIlter (EKF)
"""
import numpy as np
def get_h(x):
# Observation model
Pn = -68
h = np.zeros((8,1))
h[0] = Pn - 2 * 10 * np.log10(np.sqrt(x[0] ** 2 + x[1] ** 2 + x[8] ** 2))
h[1] = x[2]
h[2] = x[3]
h[3] = x[6]
h[4] = np.cos(x[6] - x[7]) * x[4] - np.sin(x[6] - x[7]) * x[5]
h[5] = np.sin(x[6] - x[7]) * x[4] + np.cos(x[6] - x[7]) * x[5]
h[6] = x[7]
h[7] = x[8]
return h
def get_H(x):
# Jacobian matrix of get_h()
H = np.zeros((8,9))
H[0][0] = -20 * x[0] / (np.log(10) * (x[0] ** 2 + x[1] ** 2 + x[8] ** 2))
H[0][1] = -20 * x[1] / (np.log(10) * (x[0] ** 2 + x[1] ** 2 + x[8] ** 2))
H[0][8] = -20 * x[8] / (np.log(10) * (x[0] ** 2 + x[1] ** 2 + x[8] ** 2))
H[1][2] = 1
H[2][3] = 1
H[3][6] = 1
H[4][4] = np.cos(x[6] - x[7])
H[4][5] = -np.sin(x[6] - x[7])
H[4][6] = np.sin(x[7] - x[6]) * x[4] - np.cos(x[7] - x[6]) * x[5]
H[4][7] = np.sin(x[6] - x[7]) * x[4] + np.cos(x[6] - x[7]) * x[5]
H[5][4] = np.sin(x[6] - x[7])
H[5][5] = np.cos(x[6] - x[7])
H[5][6] = np.cos(x[7] - x[6]) * x[4] + np.sin(x[7] - x[6]) * x[5]
H[5][7] = -np.cos(x[6] - x[7]) * x[4] + np.sin(x[6] - x[7]) * x[5]
H[6][7] = 1
H[7][8] = 1
return H
def get_A(dt):
# Model matrix
A = np.identity(9)
A[0][2] = -dt
A[0][4] = dt
A[1][3] = -dt
A[1][5] = dt
return A
def init_P():
# Covariance matrix
return np.identity(9)
def init_Q(s_p=0.1, s_v=0.5, s_psi=0.5, s_z=0.5):
# Process noise matrix
Q = np.zeros((9,9))
Q[0:2, 0:2] = np.identity(2) * s_p ** 2
Q[2:6, 2:6] = np.identity(4) * s_v ** 2
Q[6:8, 6:8] = np.identity(2) * s_psi ** 2
Q[8:9, 8:9] = np.identity(1) * s_z ** 2
return Q
def init_R(s_m=5, s_v=0.2, s_psi=0.2, s_z=0.2):
# Measurement noise matrix
R = np.zeros((8, 8))
R[0:1, 0:1] = np.identity(1) * s_m ** 2
R[1:5, 1:5] = np.identity(4) * s_v ** 2
R[5:7, 5:7] = np.identity(2) * s_psi ** 2
R[7:8, 7:8] = np.identity(1) * s_z ** 2
return R
def kalman_filter(time, rssi, gt, gt_rel, s_q=[0.1, 0.5], s_r=[5,0.2], optimisation=False):
""" Kalman filter
* Inputs:
- time: list containing the time at wich each measurement was taken
- rssi: noisy RSSI between the two MAVs
- gt: ground-true measurements
- gt_rel: ground-true relative measurements
- s_q = [s_a, s_b]: (optional) s_a and s_b are here the Standard Deviations (SD) used in the Q matrix of the filter
- s_r = [s_a, s_b]: (optional) same for R matrix
- optimisation: boolean: (optional) if True, no additional noise is added to the ground-true measurements
* Outputs:
- x_filter: dict containing x/y/z_rel, vx/vy, vx/vy_other, psi, psi_other
- d/b/vel/rssi_f: filtered range/bearing/absolute velocity/rssi
- d/b/vel_g: ground-true range/bearing/velocity
- d_unf: unfiltered range
"""
n = len(time)
x_filter = []
rssi_out = []
# x = [x, y, vx, vy, vx_other, vy_other, psi, psi_other, z]
# Initialised vx and vy shall be non-zero
x = np.mat([[0.], [0.], [1.], [1.], [0.], [0.], [0.], [0.], [0.]])
# Initialise matrices; R, Q are constant
P = np.mat(init_P())
Q = init_Q(s_p=s_q[0], s_v=s_q[1], s_psi=s_q[1], s_z=s_q[1])
R = init_R(s_m=s_r[0], s_v=s_r[1], s_psi=s_r[1], s_z=s_r[1])
x_filter = np.zeros((n, 9))
Z = np.empty((8,n))
noise = []
# Create *random* noise lists, with a normal distribution (mean=0, SD=0.2)
for i in range(8):
if not optimisation:
noise.append(np.random.normal(0, 0.2, n))
else:
noise.append(np.zeros(n)) # Do not use noise while optimising
# Initialise the measurement array
# Add the random noise to the ground truth measurements. Because the Kalman Filter needs noise to work properly
Z[0] = rssi # RSSI
Z[1] = gt[0]["vx"] + noise[1] # v_x MAV 1
Z[2] = gt[0]["vy"] + noise[2] # v_y MAV 1
Z[3] = gt[0]["psi"] + noise[3] # psi
Z[4] = gt[1]["vx"] + noise[4] # vx_other
Z[5] = gt[1]["vy"] + noise[5] # vx_other
Z[6] = gt[1]["psi"] + noise[6] # psi_other
Z[7] = noise[7] # z_rel (assumed to be 0 at all times)
Z = Z.T
# Run the filter steps for each measurement
for t in range(n):
# Compute the time step
if t > 0:
dt = time[t] - time[t-1]
else:
dt = 0.3
z = Z[t].reshape((8,1)) # get the measurement
A = get_A(dt) # get the model, with the correct time step
# Prediction step
x_p = A * x # state prediction
z_p = get_h(x_p) # measurement predicition
P = A * P * A.T + Q # covariance matrix prediction
# Update step
H = get_H(x_p) # compute the Jacobian of the predicted state matrix
P1 = P * H.T
K = P1 * np.linalg.inv(H * P1 + R) # compute the Kalman Gain
x = x_p + K * (z - z_p) # update the state
P = (np.identity(9) - K * H) * P # update the covariance matrix
x_filter[t] = x.reshape(9) # save the filtered measurement
col = ["x_rel", "y_rel", "vx", "vy", "vx_other", "vy_other", "psi", "psi_other", "z_rel"]
x_filter = dict(zip(col, x_filter.T))
d_g = np.sqrt(gt_rel["x"] ** 2 + gt_rel["y"] ** 2 + gt_rel["z"] ** 2) # Ground true range
b_g = np.arctan2(gt_rel["y"], gt_rel["x"]) # Ground true bearing
d_f = np.sqrt(x_filter["x_rel"] ** 2 + x_filter["y_rel"] ** 2 + x_filter["z_rel"] ** 2) # Filtered range
b_f = np.arctan2(x_filter["y_rel"], x_filter["x_rel"]) # Filtered bearing
d_unf = np.power([10] * len(time), (rssi + 68) / (-20)) # Unfiltered range
vel_f = np.sqrt((x_filter["vx"]) ** 2 + (x_filter["vy"]) ** 2) # Filtered velocity
vel_g = np.sqrt((gt[1]["vx"] - gt[0]["vx"]) ** 2 + (gt[1]["vy"] - gt[0]["vy"]) ** 2) # Ground true velocity
rssi_f = -68 - 20 * np.log10(d_f) # Filtered RSSI
return x_filter, d_g, d_f, d_unf, b_g, b_f, vel_g, vel_f, rssi_f