-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgsVisitorMass.h
142 lines (123 loc) · 5.28 KB
/
gsVisitorMass.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/** @file gsVisitorMassElasticity.h
@brief Visitor class for the mass matrix assembly for elasticity problems.
This file is part of the G+Smo library.
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
Author(s):
O. Weeger (2012 - 2015, TU Kaiserslautern),
A.Shamanskiy (2016 - ...., TU Kaiserslautern)
*/
#pragma once
#include <gsAssembler/gsQuadrature.h>
#include <gsCore/gsFuncData.h>
namespace gismo
{
template <class T>
class gsVisitorMassElasticity
{
public:
gsVisitorMassElasticity(gsSparseMatrix<T> * elimMatrix = nullptr) :
elimMat(elimMatrix) {}
void initialize(const gsBasisRefs<T> & basisRefs,
const index_t patchIndex,
const gsOptionList & options,
gsQuadRule<T> & rule)
{
GISMO_UNUSED(patchIndex);
// parametric dimension of the first displacement component
dim = basisRefs.front().dim();
// a quadrature rule is defined by the basis for the first displacement component.
rule = gsQuadrature::get(basisRefs.front(), options);
// saving necessary info
density = options.getReal("Density");
// resize containers for global indices
globalIndices.resize(dim);
blockNumbers.resize(dim);
}
inline void evaluate(const gsBasisRefs<T> & basisRefs,
const gsGeometry<T> & geo,
const gsMatrix<T> & quNodes)
{
// store quadrature points of the element for geometry evaluation
md.points = quNodes;
// NEED_MEASURE to get the Jacobian determinant values for integration
md.flags = NEED_MEASURE;
// Compute the geometry mapping at the quadrature points
geo.computeMap(md);
// Evaluate displacement basis functions on the element
basisRefs.front().eval_into(quNodes,basisValuesDisp);
// find local indices of the displacement basis functions active on the element
basisRefs.front().active_into(quNodes.col(0),localIndicesDisp);
N_D = localIndicesDisp.rows();
}
inline void assemble(gsDomainIterator<T> & element,
const gsVector<T> & quWeights)
{
GISMO_UNUSED(element);
// initialize local matrix and rhs
localMat.setZero(dim*N_D,dim*N_D);
block = density*basisValuesDisp * quWeights.asDiagonal() * md.measures.asDiagonal() * basisValuesDisp.transpose();
for (short_t d = 0; d < dim; ++d)
localMat.block(d*N_D,d*N_D,N_D,N_D) = block.block(0,0,N_D,N_D);
}
inline void localToGlobal(const int patchIndex,
const std::vector<gsMatrix<T> > & eliminatedDofs,
gsSparseSystem<T> & system)
{
// computes global indices for displacement components
for (short_t d = 0; d < dim; ++d)
{
system.mapColIndices(localIndicesDisp, patchIndex, globalIndices[d], d);
blockNumbers.at(d) = d;
}
// push to global system
system.pushToMatrix(localMat,globalIndices,eliminatedDofs,blockNumbers,blockNumbers);
// push to the elimination system
if (elimMat != nullptr)
{
index_t globalI,globalElimJ;
index_t elimSize = 0;
for (short_t dJ = 0; dJ < dim; ++dJ)
{
for (short_t dI = 0; dI < dim; ++dI)
for (index_t i = 0; i < N_D; ++i)
if (system.colMapper(dI).is_free_index(globalIndices[dI].at(i)))
{
system.mapToGlobalRowIndex(localIndicesDisp.at(i),patchIndex,globalI,dI);
for (index_t j = 0; j < N_D; ++j)
if (!system.colMapper(dJ).is_free_index(globalIndices[dJ].at(j)))
{
globalElimJ = system.colMapper(dJ).global_to_bindex(globalIndices[dJ].at(j));
elimMat->coeffRef(globalI,elimSize+globalElimJ) += localMat(N_D*dI+i,N_D*dJ+j);
}
}
elimSize += eliminatedDofs[dJ].rows();
}
}
}
protected:
// problem info
short_t dim;
//density
T density;
// geometry mapping
gsMapData<T> md;
// local components of the global linear system
gsMatrix<T> localMat;
// local indices (at the current patch) of the displacement basis functions active at the current element
gsMatrix<index_t> localIndicesDisp;
// number of displacement basis functions active at the current element
index_t N_D;
// values of displacement basis functions at quadrature points at the current element stored as a N_D x numQuadPoints matrix;
gsMatrix<T> basisValuesDisp;
bool assembleMatrix;
// elimination matrix to efficiently change Dirichlet degrees of freedom
gsSparseMatrix<T> * elimMat;
// all temporary matrices defined here for efficiency
gsMatrix<T> block;
// containers for global indices
std::vector< gsMatrix<index_t> > globalIndices;
gsVector<index_t> blockNumbers;
};
} // namespace gismo