-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnm-pso.py
282 lines (237 loc) · 13.2 KB
/
nm-pso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import numpy as np
from Particle import Particle
from mountain_scooter import MountainScooter
np.random.seed(11)
class InitialPointShapeException(Exception):
pass
class NM_PSO:
"""
Class that implement the Nelder-Mead Particle Swarm Optimization algorithm.
It take inspiration from the paper by An Liu et al. (A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays, 2012).
"""
def __init__(self, n, fitness_function, max_iterations=50, reflection_parameter=1.0, expansion_parameter=2.0, contraction_parameter=0.5, shrinking_parameter=0.5, w=0.4, c1=2.0, c2=2.0, x_1=None, shift_coefficient=1.0, verbose=False):
"""
Initialize the Nelder-Mead Particle Swarm Optimization algorithm.
:param n: Number of dimensions. It represent the size of a single particle.
:param fitness_function: Fitness function to evaluate the particles.
:param max_iterations: Maximum number of iterations. Default value is 50.
:param reflection_parameter: Reflection parameter. Default value is 1.0.
:param expansion_parameter: Expansion parameter. Default value is 2.0.
:param contraction_parameter: Contraction parameter. Default value is 0.5.
:param shrinking_parameter: Shrinkage parameter. Default value is 0.5.
:param w: Inertia weight. Default value is 0.4.
:param c1: Cognitive parameter. Default value is 2.0.
:param c2: Social parameter. Default value is 2.0.
:param x_1: Used as the first point for the simplex generation. Defaults to None, which becomes a random point.
:param shift_coefficient: Shift coefficient for the simplex initialization. Default value is 2.
:param verbose: If True, print the progress of the algorithm. Default value is False.
"""
self.n = n
self.fitness_function = fitness_function
self.max_iterations = max_iterations
self.reflection_parameter = reflection_parameter
self.expansion_parameter = expansion_parameter
self.contraction_parameter = contraction_parameter
self.shrinking_parameter = shrinking_parameter
self.w = w
self.c1 = c1
self.c2 = c2
self.x_1 = x_1
self.shift_coefficient = shift_coefficient
self.verbose = verbose
self.population = self.initialize_population()
self.best_particle_population = None
def initialize_simplex(self):
"""
Initializes the first simplex to begin iterations
:return: The first simplex points as list of Particle objects.
"""
# If the user provided a point, and it is not in the right shape
if isinstance(self.x_1, np.ndarray):
if len(self.x_1) != self.n:
raise InitialPointShapeException(
f"Please enter an initial point having {self.n} dimensions.")
else: # If the user provided a point, and it is in the right shape
first_particle = Particle(0, self.x_1)
else: # If the user didn't provide a point
# Initialize the first point of the simplex randomly
random_value = np.random.random(size=self.n)
first_particle = Particle(0, random_value)
simplex_particles = [first_particle]
# Then, we will generate the other particles by shifting the first one
# in all the position defined by an eye matrix
identity = np.eye(self.n, dtype=int)
for i in range(self.n):
simplex_particles.append(Particle(i+1, first_particle.value + self.shift_coefficient * identity[i, :]))
return simplex_particles
def initialize_population(self):
"""
Initialize the population of particles
:return: A list of particles representing the population
"""
# Number of particles in the swarm as defined in the paper
N = 2 * self.n + 1
# the first n+1 particles are constructed using the predetermined starting point and a positive step size of 1.0
population = self.initialize_simplex()
# The remaining n particles are randomly generated
for i in range(self.n+1, N):
random_value = np.random.random(size=self.n)
population.append(Particle(i, random_value))
return population
def sort(self, reverse=True):
"""
Sort the population by fitness
:param reverse: If True, sort in descending order. If False, sort in ascending order. Default value is True.
"""
self.population.sort(key=lambda x: x.fitness, reverse=reverse)
def evaluate_population(self):
"""
Evaluate the fitness of each particle in the population
"""
for particle in self.population:
particle.evaluate(self.fitness_function)
def compute_best_particle_population(self):
"""
Compute the best particle in the population according to the fitness value.
:return: Particle object representing the best particle in the population.
"""
return self.population[np.argmax([particle.fitness for particle in self.population])]
def pso(self):
"""
Perform one iteration of the PSO algorithm
"""
for particle in self.population:
# Update the particle velocity and according to that update the particle value
particle.update_velocity(self.w, self.c1, self.c2, self.best_particle_population.value)
particle.update_value()
# Repair the particle if it is infeasible and evaluate its fitness
particle.evaluate(self.fitness_function)
def nelder_mead(self):
"""
Performs one iteration of the Nelder-Mead method to the top n+1 particles and update the (n+1)th particle:
- Computes the centroid
- Tries reflection, expansion, contraction, shrinking
- Updates the simplex
If it continuously tries to shrink the simplex, it re-initializes it with the best point
(https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method)
"""
best_particle = self.population[0]
second_worst_particle = self.population[self.n-1]
worst_particle = self.population[self.n]
# Compute the centroid, excluding the worst point
centroid_value = np.mean([p.value for p in self.population[:self.n]], axis=0)
centroid_particle = Particle(-1, centroid_value)
centroid_particle.evaluate(self.fitness_function)
# REFLECTION
reflected_value = centroid_value + self.reflection_parameter * (centroid_value - worst_particle.value)
reflected_particle = Particle(worst_particle.id, reflected_value)
reflected_particle.evaluate(self.fitness_function)
# If the new reflected particle is better than the second worst, but worse than the best, we can break to the next iteration
if best_particle.fitness >= reflected_particle.fitness > second_worst_particle.fitness:
# then obtain a new simplex by replacing the worst point with the reflected point
self.population[self.n] = reflected_particle
if self.verbose:
print("\t✨ Simplex reflection applied ✨")
return
# EXPANSION
# If the point we've found is better than the best, we try to expand it
elif reflected_particle.fitness > best_particle.fitness:
expanded_value = centroid_value + self.expansion_parameter * (reflected_value - centroid_value)
expanded_particle = Particle(worst_particle.id, expanded_value)
expanded_particle.evaluate(self.fitness_function)
# We substitute the worst point with the better of the two
# If the expanded particle is better than the reflected particle
if expanded_particle.fitness > reflected_particle.fitness:
# then obtain a new simplex by replacing the worst point with the expanded point and break to the next iteration
self.population[self.n] = expanded_particle
if self.verbose:
print("\t✨ Simplex expansion tried, it worked! ✨")
else:
# otherwise, we substitute the worst point with the reflected point and break to the next iteration
self.population[self.n] = reflected_particle
if self.verbose:
print("\t✨ Simplex expansion tried, but reflection was better ✨")
return
# CONTRACTION
# Here it is certain that the reflected point is worse than the second worst
# If the reflected point we've found was better than the worst, we'll contract
elif reflected_particle.fitness > worst_particle.fitness:
contracted_value = centroid_value + self.contraction_parameter * (reflected_value - centroid_value)
contracted_particle = Particle(worst_particle.id, contracted_value)
contracted_particle.evaluate(self.fitness_function)
# If the contracted point is better than the reflected point
if contracted_particle.fitness > reflected_particle.fitness:
# then obtain a new simplex by replacing the worst point with the contracted point and break to the next iteration
self.population[self.n] = contracted_particle
if self.verbose:
print("\t✨ Simplex contraction applied ✨")
return
# we will contract too if the reflected point is worse than the worst one
elif reflected_particle.fitness <= worst_particle.fitness:
contracted_value = centroid_value + self.contraction_parameter * (worst_particle.value - centroid_value)
contracted_particle = Particle(worst_particle.id, contracted_value)
contracted_particle.evaluate(self.fitness_function)
# If the contracted point is better than the worst point
if contracted_particle.fitness > worst_particle.fitness:
# then obtain a new simplex by replacing the worst point with the contracted point and break to the next iteration
self.population[self.n] = contracted_particle
if self.verbose:
print("\t✨ Simplex contraction applied ✨")
return
# SHRINKING
# If none of the previous methods worked, we'll try our last resort: shrink contraction
# We'll want to redefine all the simplex points except for the best one.
for i in range(1, self.n + 1):
value = best_particle.value + self.shrinking_parameter * (self.population[i].value - best_particle.value)
self.population[i] = Particle(self.population[i].id, value)
self.population[i].evaluate(self.fitness_function)
if self.verbose:
print("\t✨ Simplex shrinking applied ✨")
def optimize(self):
"""
Search the optimal solution.
:return: The optimal solution.
"""
# Evaluate the fitness of each particle in the population
self.evaluate_population()
for i in range(self.max_iterations):
# Sort the population by fitness
self.sort()
self.best_particle_population = self.population[0]
if self.verbose:
print(
f"🚀 Performing iteration {i+1}:\n\t📊 "
f"Avg={round(np.average([p.fitness for p in self.population]), 2)}\t"
f"Best value={self.best_particle_population.fitness}")
# Apply Nelder-Mead operator to the top n+1 particles and update the (n+1)th particle.
self.nelder_mead()
self.best_particle_population = self.compute_best_particle_population()
# Apply PSO operator for updating the N particles.
self.pso()
self.best_particle_population = self.compute_best_particle_population()
return self.best_particle_population
def main():
print(f"🛵 Starting the MOUNTAIN SCOOTER optimization with NM-PSO algorithm...")
# initialize environment
env = MountainScooter(mass=0.4, friction=0.3, max_speed=1.8)
# The biases have to be the same amount of the nodes without considering the first layer
# The weights are the connections between the nodes of input and hidden layer + hidden and output layer
layer_nodes = [2, 8, 7, env.num_actions]
n_bias = np.sum(layer_nodes) - layer_nodes[0]
n_weights = 0
for i in range(0, len(layer_nodes) - 1):
n_weights += layer_nodes[i] * layer_nodes[i + 1]
# The dimension of a single particle is the number of biases and weights of the neural network
n = n_bias + n_weights
# initialize NM-PSO
nm_pso = NM_PSO(n=n
, fitness_function=lambda weights_and_biases: env.environment_execution(weights_and_biases, layer_nodes)
, max_iterations=20
, verbose=True)
optimal_particle = nm_pso.optimize()
env.environment_execution(optimal_particle.value, layer_nodes)
print(f"\n🏆 Optimal particle: {optimal_particle}")
env.render(show_plot=True)
print("✅ Complete!")
if __name__ == "__main__":
main()