-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmy_bilateral_filter.m
85 lines (70 loc) · 3.18 KB
/
my_bilateral_filter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
% bilateral filtering
%
% Syntax: filteredImage = bilateral_filter(Image, radius, simga_color,sigma_distance);
% Image - color image corresponding to cost volume
% radius - radius of square window (size = radius*2 + 1)
% simga_color - parameter of range-filter component
% simga_distance - parameter of Gaussian component
function [filteredImage,B] = bilateral_filter(Image, radius, sigma_color, sigma_distance)
% <write your code here >
%Image = cat(3,Image,Image,Image);
Imagehat = padarray(im2double(Image),[radius radius]);
ImagehatLab = applycform(Imagehat, makecform('srgb2lab'));
%W_distance = fspecial('gaussian',radius*2+1,sqrt(sigma_distance/2));
% Pre-compute Gaussian distance weights.
w = radius;
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/sigma_distance);
W_distance = zeros(radius*2+1);
for i=1:2*radius+1
for j=1:2*radius+1
deltag = (radius+1-i)^2 + (radius+1-j)^2;
W_distance(i,j) = exp(-deltag/sigma_distance);
end
end
W_color = zeros(radius*2+1);
A = applycform(im2double(Image),makecform('srgb2lab'));
dim = size(Image);
B = zeros(dim);
% apply bilateral filter
for y=1:size(Image,1) % loop over image height
for x=1:size(Image,2) % loop over image width
for i=1:2*radius+1 % loop over kernel height
for j=1:2*radius+1 % loop over kernel width
deltacolor = sum((reshape(ImagehatLab(y+radius,x+radius,:),3,1)-reshape(ImagehatLab(y+i-1,x+j-1,:),3,1)).*...
(reshape(ImagehatLab(y+radius,x+radius,:),3,1)-reshape(ImagehatLab(y+i-1,x+j-1,:),3,1)));
W_color(i,j) = exp(-deltacolor/sigma_color);
end
end
% W_color = W_color./sum(sum(W_color));
factor = W_distance.*W_color;
factorhat = factor./sum(sum(factor));
filteredImageLab(y,x,1) = sum(sum(ImagehatLab(y:y+2*radius,x:x+2*radius,1).*factorhat));
filteredImageLab(y,x,2) = sum(sum(ImagehatLab(y:y+2*radius,x:x+2*radius,2).*factorhat));
filteredImageLab(y,x,3) = sum(sum(ImagehatLab(y:y+2*radius,x:x+2*radius,3).*factorhat));
% filteredImage(y,x) = sum(sum(Imagehat_gray(y:y+2*radius,x:x+2*radius).*factor));
%%
% Extract local region.
iMin = max(y-w,1);
iMax = min(y+w,dim(1));
jMin = max(x-w,1);
jMax = min(x+w,dim(2));
I = A(iMin:iMax,jMin:jMax,:);
% Compute Gaussian range weights.
dL = I(:,:,1)-A(y,x,1);
da = I(:,:,2)-A(y,x,2);
db = I(:,:,3)-A(y,x,3);
H = exp(-(dL.^2+da.^2+db.^2)/sigma_color);
% Calculate bilateral filter response.
F = H.*G((iMin:iMax)-y+w+1,(jMin:jMax)-x+w+1);
norm_F = sum(F(:));
B(y,x,1) = sum(sum(F.*I(:,:,1)))/norm_F;
B(y,x,2) = sum(sum(F.*I(:,:,2)))/norm_F;
B(y,x,3) = sum(sum(F.*I(:,:,3)))/norm_F;
end
end
filteredImage = applycform(filteredImageLab,makecform('lab2srgb'));
B = applycform(B,makecform('lab2srgb'));
figure,
subplot(131), imshow(Image), subplot(132), imshow(filteredImage), subplot(133), imshow(B),
end