forked from eborboihuc/Deep360Pilot-CVPR17
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
190 lines (149 loc) · 6.69 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import cv2
import pdb
import numpy as np
from os.path import join
from ops import l2_dist_360
from MeanOverlap import MeanOverlap
def catData(totalData, newData):
""" Concat data from scratch """
if totalData is None:
totalData = newData[np.newaxis].copy()
else:
totalData = np.concatenate((totalData, newData[np.newaxis]))
return totalData
def score(Agent, seq1, seq2, _full=True):
""" Calculate IoU """
acc = 0.0
total_num = 0
MO = MeanOverlap(Agent.W, Agent.H)
for batch in xrange(Agent.batch_size):
for i in xrange(Agent.n_frames):
if not _full and np.sum(seq2[batch][i]) == 0:
continue
acc += MO.IOU((seq1[batch, i, 0], seq1[batch, i, 1]), (seq2[batch, i, 0], seq2[batch, i, 1]))
total_num += 1
return (acc / total_num) if total_num != 0 else 0 #(n_frames*batch_size)
def printAcc(threshold, targetFrNum, totalFrNum):
""" Fetch accuracy and print out """
print "Acc is:"
for th in threshold:
print ("%d" %(th)),
print
for i, types in enumerate(targetFrNum):
print i if i < 4 else (i-4),
for j, th in enumerate(threshold):
print ("%.5f" %(types[j] / (totalFrNum if totalFrNum > 0 else 1))),
print
def cal_accuracy(Agent, pred, gt, targetFrNum, totalFrNum):
""" Calculate and return accuracy """
if np.sum(gt) == 0:
return targetFrNum, totalFrNum
l2_dist = l2_dist_360(pred, gt, Agent.W)
l2_dist = np.tile(l2_dist,(len(Agent.threshold), 1))
""" if l2_dist(10 x 50) <= thres(1 x 10), then targetFrNum(8types x 10thres) += 1 """
thres = np.sum(l2_dist <= np.tile(np.reshape(Agent.threshold, (-1, 1)), (1, l2_dist.shape[-1])), axis=1)
center = np.array([Agent.W/2, Agent.H/2])
for th, i in enumerate(thres):
if np.min(np.linalg.norm(gt - center, axis=1)) > 100:
targetFrNum[i,th] += 1
else:
targetFrNum[i+4,th] += 1
totalFrNum += 1
return targetFrNum, totalFrNum
def load_batch_data(Agent, path, num_batch, _copy=False, _augment=False):
""" Load batch data from path and normalize them, use copy to preserve raw data """
data = np.load(join(path, 'pruned_roisavg/batch_{}.npy'.format(num_batch))) #[0:Agent.batch_size,0:Agent.n_frames,0:Agent.n_detection,0:Agent.n_input]
oracle_viewangle = np.load(join(path, 'label/batch_{}.npy'.format(num_batch))) #[0:Agent.batch_size,0:Agent.n_frames,0:Agent.n_classes+1]
one_hot_labels = np.load(join(path, 'onehot/batch_{}.npy'.format(num_batch))) #[0:Agent.batch_size,0:Agent.n_frames,0:Agent.n_detection]
hof = np.load(join(path, 'hof/batch_{}.npy'.format(num_batch))) #[0:Agent.batch_size,0:Agent.n_frames,0:Agent.n_detection,0:Agent.n_bin_size]
box_center = np.load(join(path, 'divide_area_pruned_boxes/batch_{}.npy'.format(num_batch))) #[0:Agent.batch_size,0:Agent.n_frames,0:Agent.n_detection,0:]
img = np.zeros((Agent.batch_size), dtype=np.float16)
if _augment is True:
data, oracle_viewangle, box_center = augment_data(data, oracle_viewangle, box_center)
if _copy is True:
box = np.copy(box_center)
gt = np.copy(oracle_viewangle)[:, :, :2]
else:
box = None
gt = None
box_center[:,:,:,0] = (box_center[:,:,:,0]/Agent.W + box_center[:,:,:,2]/Agent.W)/2
box_center[:,:,:,1] = (box_center[:,:,:,1]/Agent.H + box_center[:,:,:,3]/Agent.H)/2
box_center = box_center[:, :, :, :2]
oracle_viewangle[:,:,0] = oracle_viewangle[:,:,0]/Agent.W
oracle_viewangle[:,:,1] = oracle_viewangle[:,:,1]/Agent.H
oracle_viewangle = oracle_viewangle[:, :, :2]
return data, one_hot_labels, oracle_viewangle, box_center, hof, img, box, gt
def visual_gaze(Agent, img_name, gt, pred, alphas, box):
"""
[Deprecated]
Draw and plot visual gaze contains boxes, gt gazes, and prediction
"""
print Agent.img_path + img_name + '.jpg'
img = cv2.imread(Agent.img_path + img_name + '.jpg',3)
if img is None:
print 'No image is found.'
return 1
img = cv2.resize(img, (int(W),int(H)))
W = Agent.W
H = Agent.H
# Box
idx = 0
transparent = 0.90
for xmin, ymin, xmax, ymax in box.astype(np.int32):
if xmax > W: xmax = int(W)
if ymax > H: ymax = int(H)
print xmin, ymin, xmax, ymax, alphas[idx]
#if alphas[idx] > 0.0:
cv2.rectangle(img,(xmin, ymin),(xmax, ymax), (255,255,255), 2)
img[ymin:ymax,xmin:xmax,:] = img[ymin:ymax,xmin:xmax,:]*0.95 + np.ones((ymax-ymin,xmax-xmin,3))*0.05
cv2.putText(img, ("{0:.2f}").format(alphas[idx]), (int((xmax+xmin)/2)+1 , int((ymax+ymin)/2)+1), cv2.FONT_HERSHEY_SIMPLEX, 1.50, (0,0,0), 2)
cv2.putText(img, ("{0:.2f}").format(alphas[idx]), (int((xmax+xmin)/2) , int((ymax+ymin)/2)), cv2.FONT_HERSHEY_SIMPLEX, 1.50, (255,255,255), 2)
idx += 1
# Predicted gaze
ll = 3
# Desire gaze
color = [(255, 0, 0), (0,255,0),(0,255,255),(0,0,255)] # Green, Yellow, Red
i = 2
u, v = gt.astype(np.int32)
img[v-ll:v+ll,u-ll:u+ll,1] = 255
cv2.circle(img,(u,v),10,color[i],2) # desize gaze centers
xmin = u - int(W/4) if u > W/4 else 0
xmax = u + int(W/4) if u < 3*W/4 else int(W)
ymin = v - int(H/4) if v > H/4 else 0
ymax = v + int(H/4) if v < 3*H/4 else int(H)
cv2.rectangle(img,(xmin, ymin),(xmax, ymax), color[i], 2)
img[ymin:ymax,xmin:xmax,:] = img[ymin:ymax,xmin:xmax,:]*transparent + \
np.tile(np.array([clr for clr in color[i]])*(1-transparent),(ymax-ymin,xmax-xmin,1))
print ("gt: ({}, {})").format(u, v)
# Predicted gaze
i = 0
u, v = int(pred[0]), int(pred[1])
img[v-ll:v+ll,u-ll:u+ll,2] = 255
cv2.circle(img,(u,v),10,(255,0,0),2) # predicted gaze center
xmin = u - int(W/4) if u > W/4 else 0
xmax = u + int(W/4) if u < 3*W/4 else int(W)
ymin = v - int(H/4) if v > H/4 else 0
ymax = v + int(H/4) if v < 3*H/4 else int(H)
cv2.rectangle(img,(xmin, ymin),(xmax, ymax), color[i], 2)
img[ymin:ymax,xmin:xmax,:] = img[ymin:ymax,xmin:xmax,:]*transparent + \
np.tile(np.array([clr for clr in color[i]])*(1-transparent),(ymax-ymin,xmax-xmin,1))
print ("pred: ({}, {})").format(u, v)
img = cv2.resize(img, (800,400))
if Agent._save_img:
cv2.imwrite(save_path+img_name+'.jpg', img)
else:
cv2.imshow("gaze", img)
key = cv2.waitKey(0) & 0xFF
if key == 27:
return -1
elif key == ord('q'):
return -2
elif key == ord('s'):
return -3
elif key == ord('c'):
Agent._save_img = not Agent._save_img
return 0
else:
return 0