-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
516 lines (431 loc) · 17.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# -*- coding: utf-8 -*-
from __future__ import unicode_literals, print_function, division
'''
Created on Sat Apr 14 18:34:08 2019
AUTHORS : Hrishikesh S.
C. Anjana Keshav Das
COMMENTS : # for explanantion
## for removing code
Do not remove code, only comment it
'''
# PATH :: cd "Desktop/Third Year/NLP/Project/ProjectV1"
# To run the code, $ python3 pytorch_train.py
from io import open
import unicodedata
import string
import re
import random
import csv
import sys
import time
import math
import torch
import io
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
# use gpu if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# to prevent OverflowError: Python int too large to convert to C long
import sys
import csv
maxInt = sys.maxsize
while True:
# decrease the maxInt value by factor 10
# as long as the OverflowError occurs.
try:
csv.field_size_limit(maxInt)
break
except OverflowError:
maxInt = int(maxInt/10)
# to indicate start of sentence
SOS_token = 0
# to indicate end of sentence
EOS_token = 1
##csv.field_size_limit(sys.maxsize)
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1: "EOS"}
# Count SOS and EOS
self.n_words = 2
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
# to converting words to indices
# each word in vocabulary will have a
# unique index
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
# convert a unicode string to plain ASCII
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', str(s))
if unicodedata.category(c) != 'Mn'
)
# converting all words to lowercase
# trim and remove non-letter characters
def normalizeString(s):
# convertion to lower case
s = unicodeToAscii(s.lower().strip())
# removing punctuations
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
def readLangs(lang1, lang2, reverse=False):
print("Reading lines...")
modern = []
original = []
# the data is aligned, such that every translation is on the same line
# extracting the corpus data from data/all_modern.snt.aligned
with open('data/all_modern.snt.aligned', 'rt', encoding = 'utf-8') as f:
data = csv.reader(f)
for row in data:
if(len(row)==1):
modern.append(normalizeString(row[0]))
else:
string = row[0]
for i in range(1,len(row)):
string = string + ',' + row[i]
modern.append(normalizeString(string))
print("MODERN READ DONE")
# extracting the corpus data from data/all_original.snt.aligned
with open('data/all_original.snt.aligned','rt', encoding = 'utf-8')as f:
data = csv.reader(f)
for row in data:
if(len(row)==1):
original.append(normalizeString(row[0]))
else:
string = row[0]
for i in range(1,len(row)):
string = string + ',' + row[i]
original.append(normalizeString(string))
print("ORIGINAL READ DONE")
##modern = modern[:3000]
##original = original[:3000]
word_pairs=[]
# constructing word pairs to show from-to translation
for i in range(0,len(modern)):
temp = []
temp.append(original[i])
temp.append(modern[i])
word_pairs.append(temp)
# to return vocabulary's indices, counts
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang,output_lang,word_pairs
MAX_LENGTH = 10
# to remove extremely long strings to prevent
# training with long sentences as it reduces the
# model's accuracy
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH
# helper function
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
# prepare data by returning word pairs & indices
def prepareData(lang1, lang2, reverse=False):
input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted words:")
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs
input_lang, output_lang, pairs = prepareData('eng_shakespeare', 'eng_modern', True)
print(random.choice(pairs))
# seq2seq network/model
# frees us from sequence length and order
# the encoder reads an input sequence and outputs a single vector,
# and the decoder reads that vector to produce an output sequence
# encoder class
# encodes the inputs
# using a GRU unit
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
# previous timestep's hidden state
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
# initial hidden state
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
# decoder class, using attention mechanism
# uses encoder's output vectors to generate output sequence
# for capturing context
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
# conversion into tensors for training
# preparing list of word indices for each sentence
def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
# uses indexesFromSentence() to return list of word indices
# for all sentences
def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
# uses tensorFromSentence() to return modern & shakespeare
# sentences by splitting them
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
# for faster convergence
# can pick up meaning by using just first few words
teacher_forcing_ratio = 0.5
# function to build the model which is used for training
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
# set the gradients to zero before starting to do backpropragation
# as PyTorch accumulates the gradients on subsequent backward passes
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# using tensor size of input & target to decide
# input and output for encoder & decoder model respectively
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
# building input layer
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
# teacher forcing is done randomly
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# teacher forcing: feed the target as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di]
else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
# detach from history as input
decoder_input = topi.squeeze().detach()
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
# to show minutes while training
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
# to show timeSince
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
# training the model
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
# start a timer
start = time.time()
plot_losses = []
# Reset every print_every
print_loss_total = 0
# Reset every plot_every
plot_loss_total = 0
# initialize optimizers and criterion
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
# create set of training pairs
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.NLLLoss()
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
# start empty losses array for plotting
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg))
if iter % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
# plot losses
showPlot(plot_losses)
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np
# for plotting
def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
plt.savefig('plots/loss.png')
plt.show()
# to test the model with custom inputs
# no targets, so we directly expect outputs
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) # SOS
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
# to test the model with training corpus data
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
# initialize & train
hidden_size = 256
# build encoder
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
# build decoder
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
# train the models
trainIters(encoder1, attn_decoder1, 75000, print_every=5000)
# attributes of the encoder model
print("Encoder Model's state dict")
for i in encoder1.state_dict():
print(i, '\t', encoder1.state_dict()[i])
# attributes of the decoder model
print("Attention Decoder Model's state dict")
for i in attn_decoder1.state_dict():
print(i, '\t', attn_decoder1.state_dict()[i])
# save the models in models folder
torch.save(encoder1.state_dict(), 'models/encoder_pyshake_to_pymodern')
torch.save(attn_decoder1.state_dict(), 'models/attndecoder_pyshake_to_pymodern')
# build encoder
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
# build decoder
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
# to load the saved load models from models folder
encoder1.load_state_dict(torch.load('models/encoder_pyshake_to_pymodern'))
attn_decoder1.load_state_dict(torch.load('models/attndecoder_pyshake_to_pymodern'))
# for random evaluation
evaluateRandomly(encoder1, attn_decoder1)
# for evaluation along with visualization of attention matrix
output_words, attentions = evaluate(
encoder1, attn_decoder1, "she is banished")
plt.matshow(attentions.numpy())
plt.savefig('plots/attention.png')
# for visualizing attention matrix
def showAttention(input_sentence, output_words, attentions):
# Set up figure with colorbar
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(attentions.numpy(), cmap='bone')
fig.colorbar(cax)
# Set up axes
ax.set_xticklabels([''] + input_sentence.split(' ') +
['<EOS>'], rotation=90)
ax.set_yticklabels([''] + output_words)
# Show label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.savefig("plots/" + input_sentence + ".png")
##plt.show()
# evaluate & visualize attention at once - uses previously defined
# showAttention() & evaluate() functions
def evaluateAndShowAttention(input_sentence):
output_words, attentions = evaluate(
encoder1, attn_decoder1, input_sentence)
print('input =', input_sentence)
print('output =', ' '.join(output_words))
showAttention(input_sentence, output_words, attentions)
# sample test 1
evaluateAndShowAttention("what are thou")
# sample test 2
evaluateAndShowAttention("thou shalt die")
# sample test 3
evaluateAndShowAttention("yonder lies the fool")
# sample test 4
evaluateAndShowAttention("what would you have")