-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmodules.py
254 lines (201 loc) · 10.1 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch.nn as nn, torch, copy, tqdm, math
from torch.autograd import Variable
import torch.nn.functional as F
use_cuda = torch.cuda.is_available()
def max_out(x):
# make sure s2 is even and that the input is 2 dimension
if len(x.size()) == 2:
s1, s2 = x.size()
x = x.unsqueeze(1)
x = x.view(s1, s2 // 2, 2)
x, _ = torch.max(x, 2)
elif len(x.size()) == 3:
s1, s2, s3 = x.size()
x = x.unsqueeze(1)
x = x.view(s1, s2, s3 // 2, 2)
x, _ = torch.max(x, 3)
return x
class Seq2Seq(nn.Module):
def __init__(self, options):
super(Seq2Seq, self).__init__()
self.base_enc = BaseEncoder(options.vocab_size, options.emb_size, options.ut_hid_size, options)
self.ses_enc = SessionEncoder(options.ses_hid_size, options.ut_hid_size, options)
self.dec = Decoder(options)
def forward(self, sample_batch):
u1, u1_lens, u2, u2_lens, u3, u3_lens = sample_batch[0], sample_batch[1], sample_batch[2], \
sample_batch[3], sample_batch[4], sample_batch[5]
if use_cuda:
u1 = u1.cuda()
u2 = u2.cuda()
u3 = u3.cuda()
o1, o2 = self.base_enc((u1, u1_lens)), self.base_enc((u2, u2_lens))
qu_seq = torch.cat((o1, o2), 1)
final_session_o = self.ses_enc(qu_seq)
preds, lmpreds = self.dec((final_session_o, u3, u3_lens))
return preds, lmpreds
# encode each sentence utterance into a single vector
class BaseEncoder(nn.Module):
def __init__(self, vocab_size, emb_size, hid_size, options):
super(BaseEncoder, self).__init__()
self.hid_size = hid_size
self.num_lyr = options.num_lyr
self.drop = nn.Dropout(options.drp)
self.direction = 2 if options.bidi else 1
# by default they requires grad is true
self.embed = nn.Embedding(vocab_size, emb_size, padding_idx=10003, sparse=False)
self.rnn = nn.GRU(input_size=emb_size, hidden_size=hid_size,
num_layers=self.num_lyr, bidirectional=options.bidi, batch_first=True, dropout=options.drp)
def forward(self, inp):
x, x_lens = inp[0], inp[1]
bt_siz, seq_len = x.size(0), x.size(1)
h_0 = Variable(torch.zeros(self.direction * self.num_lyr, bt_siz, self.hid_size))
if use_cuda:
h_0 = h_0.cuda()
x_emb = self.embed(x)
x_emb = self.drop(x_emb)
x_emb = torch.nn.utils.rnn.pack_padded_sequence(x_emb, x_lens, batch_first=True)
x_o, x_hid = self.rnn(x_emb, h_0)
# assuming dimension 0, 1 is for layer 1 and 2, 3 for layer 2
if self.direction == 2:
x_hids = []
for i in range(self.num_lyr):
x_hid_temp, _ = torch.max(x_hid[2*i:2*i + 2, :, :], 0, keepdim=True)
x_hids.append(x_hid_temp)
x_hid = torch.cat(x_hids, 0)
# x_o, _ = torch.nn.utils.rnn.pad_packed_sequence(x_o, batch_first=True)
# using x_o and returning x_o[:, -1, :].unsqueeze(1) is wrong coz its all 0s careful! it doesn't adjust for variable timesteps
x_hid = x_hid[self.num_lyr-1, :, :].unsqueeze(0)
# take the last layer of the encoder GRU
x_hid = x_hid.transpose(0, 1)
return x_hid
# encode the hidden states of a number of utterances
class SessionEncoder(nn.Module):
def __init__(self, hid_size, inp_size, options):
super(SessionEncoder, self).__init__()
self.hid_size = hid_size
self.rnn = nn.GRU(hidden_size=hid_size, input_size=inp_size,
num_layers=1, bidirectional=False, batch_first=True, dropout=options.drp)
def forward(self, x):
h_0 = Variable(torch.zeros(1, x.size(0), self.hid_size))
if use_cuda:
h_0 = h_0.cuda()
# output, h_n for output batch is already dim 0
h_o, h_n = self.rnn(x, h_0)
h_n = h_n.view(x.size(0), -1, self.hid_size)
return h_n
# decode the hidden state
class Decoder(nn.Module):
def __init__(self, options):
super(Decoder, self).__init__()
self.emb_size = options.emb_size
self.hid_size = options.dec_hid_size
self.num_lyr = 1
self.teacher_forcing = options.teacher
self.train_lm = options.lm
self.drop = nn.Dropout(options.drp)
self.tanh = nn.Tanh()
self.shared_weight = options.shrd_dec_emb
self.embed_in = nn.Embedding(options.vocab_size, self.emb_size, padding_idx=10003, sparse=False)
if not self.shared_weight:
self.embed_out = nn.Linear(self.emb_size, options.vocab_size, bias=False)
self.rnn = nn.GRU(hidden_size=self.hid_size,input_size=self.emb_size,num_layers=self.num_lyr,batch_first=True,dropout=options.drp)
self.ses_to_dec = nn.Linear(options.ses_hid_size, self.hid_size)
self.dec_inf = nn.Linear(self.hid_size, self.emb_size*2, False)
self.ses_inf = nn.Linear(options.ses_hid_size, self.emb_size*2, False)
self.emb_inf = nn.Linear(self.emb_size, self.emb_size*2, True)
self.tc_ratio = 1.0
if options.lm:
self.lm = nn.GRU(input_size=self.emb_size, hidden_size=self.hid_size, num_layers=self.num_lyr, batch_first=True, dropout=options.drp, bidirectional=False)
self.lin3 = nn.Linear(self.hid_size, self.emb_size, False)
def do_decode_tc(self, ses_encoding, target, target_lens):
target_emb = self.embed_in(target)
target_emb = self.drop(target_emb)
# below will be used later as a crude approximation of an LM
emb_inf_vec = self.emb_inf(target_emb)
target_emb = torch.nn.utils.rnn.pack_padded_sequence(target_emb, target_lens, batch_first=True)
init_hidn = self.tanh(self.ses_to_dec(ses_encoding))
init_hidn = init_hidn.view(self.num_lyr, target.size(0), self.hid_size)
hid_o, hid_n = self.rnn(target_emb, init_hidn)
hid_o, _ = torch.nn.utils.rnn.pad_packed_sequence(hid_o, batch_first=True)
# linear layers not compatible with PackedSequence need to unpack, will be 0s at padded timesteps!
dec_hid_vec = self.dec_inf(hid_o)
ses_inf_vec = self.ses_inf(ses_encoding)
total_hid_o = dec_hid_vec + ses_inf_vec + emb_inf_vec
hid_o_mx = max_out(total_hid_o)
hid_o_mx = F.linear(hid_o_mx, self.embed_in.weight) if self.shared_weight else self.embed_out(hid_o_mx)
if self.train_lm:
siz = target.size(0)
lm_hid0 = Variable(torch.zeros(self.num_lyr, siz, self.hid_size))
if use_cuda:
lm_hid0 = lm_hid0.cuda()
lm_o, lm_hid = self.lm(target_emb, lm_hid0)
lm_o, _ = torch.nn.utils.rnn.pad_packed_sequence(lm_o, batch_first=True)
lm_o = self.lin3(lm_o)
lm_o = F.linear(lm_o, self.embed_in.weight) if self.shared_weight else self.embed_out(lm_o)
return hid_o_mx, lm_o
else:
return hid_o_mx, None
def do_decode(self, siz, seq_len, ses_encoding, target):
ses_inf_vec = self.ses_inf(ses_encoding)
ses_encoding = self.tanh(self.ses_to_dec(ses_encoding))
hid_n, preds, lm_preds = ses_encoding, [], []
hid_n = hid_n.view(self.num_lyr, siz, self.hid_size)
inp_tok = Variable(torch.ones(siz, 1).long())
lm_hid = Variable(torch.zeros(self.num_lyr, siz, self.hid_size))
if use_cuda:
lm_hid = lm_hid.cuda()
inp_tok = inp_tok.cuda()
for i in range(seq_len):
# initially tc_ratio is 1 but then slowly decays to 0 (to match inference time)
if torch.randn(1)[0] < self.tc_ratio:
inp_tok = target[:, i].unsqueeze(1)
inp_tok_vec = self.embed_in(inp_tok)
emb_inf_vec = self.emb_inf(inp_tok_vec)
inp_tok_vec = self.drop(inp_tok_vec)
hid_o, hid_n = self.rnn(inp_tok_vec, hid_n)
dec_hid_vec = self.dec_inf(hid_o)
total_hid_o = dec_hid_vec + ses_inf_vec + emb_inf_vec
hid_o_mx = max_out(total_hid_o)
hid_o_mx = F.linear(hid_o_mx, self.embed_in.weight) if self.shared_weight else self.embed_out(hid_o_mx)
preds.append(hid_o_mx)
if self.train_lm:
lm_o, lm_hid = self.lm(inp_tok_vec, lm_hid)
lm_o = self.lin3(lm_o)
lm_o = F.linear(lm_o, self.embed_in.weight) if self.shared_weight else self.embed_out(lm_o)
lm_preds.append(lm_o)
op = hid_o[:, :, :-1]
op = F.log_softmax(op, 2, 5)
max_val, inp_tok = torch.max(op, dim=2)
# now inp_tok will be val between 0 and 10002 ignoring padding_idx
# here we do greedy decoding
# so we can ignore the last symbol which is a padding token
# technically we don't need a softmax here as we just want to choose the max token, max score will result in max softmax.Duh!
dec_o = torch.cat(preds, 1)
dec_lmo = torch.cat(lm_preds, 1) if self.train_lm else None
return dec_o, dec_lmo
def forward(self, input):
if len(input) == 1:
ses_encoding = input
x, x_lens = None, None
beam = 5
elif len(input) == 3:
ses_encoding, x, x_lens = input
beam = 5
else:
ses_encoding, x, x_lens, beam = input
if use_cuda:
x = x.cuda()
siz, seq_len = x.size(0), x.size(1)
if self.teacher_forcing:
dec_o, dec_lm = self.do_decode_tc(ses_encoding, x, x_lens)
else:
dec_o, dec_lm = self.do_decode(siz, seq_len, ses_encoding, x)
return dec_o, dec_lm
def set_teacher_forcing(self, val):
self.teacher_forcing = val
def get_teacher_forcing(self):
return self.teacher_forcing
def set_tc_ratio(self, new_val):
self.tc_ratio = new_val
def get_tc_ratio(self):
return self.tc_ratio