-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathutil.py
143 lines (117 loc) · 4.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import copy
import pickle
from torch.utils.data import Dataset
from torch.autograd import Variable
from tqdm import tqdm
import numpy as np
use_cuda = torch.cuda.is_available()
def custom_collate_fn(batch):
# input is a list of dialogturn objects
bt_siz = len(batch)
# sequence length only affects the memory requirement, otherwise longer is better
pad_idx, max_seq_len = 10003, 160
u1_batch, u2_batch, u3_batch = [], [], []
u1_lens, u2_lens, u3_lens = np.zeros(bt_siz, dtype=int), np.zeros(bt_siz, dtype=int), np.zeros(bt_siz, dtype=int)
# these store the max sequence lengths for the batch
l_u1, l_u2, l_u3 = 0, 0, 0
for i, (d, cl_u1, cl_u2, cl_u3) in enumerate(batch):
cl_u1 = min(cl_u1, max_seq_len)
cl_u2 = min(cl_u2, max_seq_len)
cl_u3 = min(cl_u3, max_seq_len)
if cl_u1 > l_u1:
l_u1 = cl_u1
u1_batch.append(torch.LongTensor(d.u1))
u1_lens[i] = cl_u1
if cl_u2 > l_u2:
l_u2 = cl_u2
u2_batch.append(torch.LongTensor(d.u2))
u2_lens[i] = cl_u2
if cl_u3 > l_u3:
l_u3 = cl_u3
u3_batch.append(torch.LongTensor(d.u3))
u3_lens[i] = cl_u3
t1, t2, t3 = u1_batch, u2_batch, u3_batch
u1_batch = Variable(torch.ones(bt_siz, l_u1).long() * pad_idx)
u2_batch = Variable(torch.ones(bt_siz, l_u2).long() * pad_idx)
u3_batch = Variable(torch.ones(bt_siz, l_u3).long() * pad_idx)
end_tok = torch.LongTensor([2])
for i in range(bt_siz):
seq1, cur1_l = t1[i], t1[i].size(0)
if cur1_l <= l_u1:
u1_batch[i, :cur1_l].data.copy_(seq1[:cur1_l])
else:
u1_batch[i, :].data.copy_(torch.cat((seq1[:l_u1-1], end_tok), 0))
seq2, cur2_l = t2[i], t2[i].size(0)
if cur2_l <= l_u2:
u2_batch[i, :cur2_l].data.copy_(seq2[:cur2_l])
else:
u2_batch[i, :].data.copy_(torch.cat((seq2[:l_u2-1], end_tok), 0))
seq3, cur3_l = t3[i], t3[i].size(0)
if cur3_l <= l_u3:
u3_batch[i, :cur3_l].data.copy_(seq3[:cur3_l])
else:
u3_batch[i, :].data.copy_(torch.cat((seq3[:l_u3-1], end_tok), 0))
sort1, sort2, sort3 = np.argsort(u1_lens*-1), np.argsort(u2_lens*-1), np.argsort(u3_lens*-1)
# cant call use_cuda here because this function block is used in threading calls
return u1_batch[sort1, :], u1_lens[sort1], u2_batch[sort2, :], u2_lens[sort2], u3_batch[sort3, :], u3_lens[sort3]
class DialogTurn:
def __init__(self, item):
self.u1, self.u2, self.u3 = [], [], []
cur_list, i = [], 0
for d in item:
cur_list.append(d)
if d == 2:
if i == 0:
self.u1 = copy.copy(cur_list)
cur_list[:] = []
elif i == 1:
self.u2 = copy.copy(cur_list)
cur_list[:] = []
else:
self.u3 = copy.copy(cur_list)
cur_list[:] = []
i += 1
def __len__(self):
return len(self.u1) + len(self.u2) + len(self.u3)
def __repr__(self):
return str(self.u1 + self.u2 + self.u3)
class MovieTriples(Dataset):
def __init__(self, data_type, length=None):
if data_type == 'train':
_file = '/home/harshals/hed-dlg/Data/MovieTriples/Training.triples.pkl'
elif data_type == 'valid':
_file = '/home/harshals/hed-dlg/Data/MovieTriples/Validation.triples.pkl'
elif data_type == 'test':
_file = '/home/harshals/hed-dlg/Data/MovieTriples/Test.triples.pkl'
self.utterance_data = []
with open(_file, 'rb') as fp:
data = pickle.load(fp)
for d in data:
self.utterance_data.append(DialogTurn(d))
# it helps in optimization that the batch be diverse, definitely helps!
# self.utterance_data.sort(key=cmp_to_key(cmp_dialog))
if length:
self.utterance_data = self.utterance_data[2000:2000 + length]
def __len__(self):
return len(self.utterance_data)
def __getitem__(self, idx):
dialog = self.utterance_data[idx]
return dialog, len(dialog.u1), len(dialog.u2), len(dialog.u3)
def tensor_to_sent(x, inv_dict, greedy=False):
sents = []
inv_dict[10003] = '<pad>'
for li in x:
if not greedy:
scr = li[1]
seq = li[0]
else:
scr = 0
seq = li
sent = []
for i in seq:
sent.append(inv_dict[i])
if i == 2:
break
sents.append((" ".join(sent), scr))
return sents