-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipe03_fourier_of_angles.py
314 lines (285 loc) · 10.9 KB
/
pipe03_fourier_of_angles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
'''
Calculate and store coefficients of Fourier expansion of angle theta, psi.
- Save coefficients to files
- Coeffs for basis functions: 1, cos x, sin x, cos2x, sin2x..
- Visual checks are in the end of the file
'''
import os.path
import numpy as np
from math import cos, sin, pi
import scipy.linalg as lin
def get_basis_function(k):
'''
0: 1; 1: cos(x); 2: sin(x); 3: cos(2x) ...
'''
if k < -1:
raise ValueError
elif k == 0:
return lambda x: 1
elif k % 2 == 1:
n = k // 2 + 1
return lambda x: cos(n * x)
elif k % 2 == 0:
n = k // 2
return lambda x: sin(n * x)
# Input
input_folder = 'res/pipe02'
output_folder = 'res/pipe03'
os.makedirs(output_folder, exist_ok=True)
nharm = 4
# Load data
thetas2D = np.loadtxt(os.path.join(input_folder, 'theta.dat'))
psis2D = np.loadtxt(os.path.join(input_folder, 'psi.dat'))
ds = np.loadtxt(os.path.join(input_folder, 'ds.dat'))
iframes_raw = np.loadtxt(os.path.join(input_folder, 'iframe.dat'), dtype=np.uint)
phis = 2 * pi * (iframes_raw - 1) / max(iframes_raw)
## Linear fit
## fix x_k; treat each point individually
## N = len(iframes_raw)
## B - array (N,2*nharm +1) - matrix of vlaues of basis functions on points where we know values of psi
## c - array (2*nharm +1) - vector with expansion coefficients
## psi - array (N) - values of psi at point x_k; for each of known phases;
## B*c = psi_vals => c =...
# 1. Define basis functions and construct a matrix of values for linear fit
basis_functions = [get_basis_function(k) for k in range(2 * nharm + 1)]
B = np.array([[b(phi) for b in basis_functions] for phi in phis])
# 2. Linear fit to find Fourier coefficients of modified values: psi - slope * phi
# With weights, proportional to sin(theta);
psi_coeffs = np.full((B.shape[1], psis2D.shape[1]), fill_value=np.nan)
for i, (thetas, psis_mod) in enumerate(zip(thetas2D.T, psis2D.T)):
weights = abs(np.sin(thetas)) ** (1 / 2)
weights = np.diag(weights)
psi_coeffs1D, residuals, rank, singular_vals = lin.lstsq(weights @ B, weights @ psis_mod)
psi_coeffs[:, i] = psi_coeffs1D
### Theta
# 3. Linear fit to find Fourier coefficients of theta values
theta_coeffs, residuals, rank, singular_vals = lin.lstsq(B, thetas2D) #
### Save results
np.savetxt(os.path.join(output_folder, "psi_coeffs.dat"), psi_coeffs)
np.savetxt(os.path.join(output_folder, "theta_coeffs.dat"), theta_coeffs)
#####################
# Visual checks - TODO: update
#####################
x2D = np.loadtxt(os.path.join(input_folder, 'x.dat'))
y2D = np.loadtxt(os.path.join(input_folder, 'y.dat'))
z2D = np.loadtxt(os.path.join(input_folder, 'z.dat'))
rr3D = np.array([x2D, y2D, z2D]).transpose((1, 2, 0))
### psi
# phi0 = sp.linspace(0, 2 * sp.pi)
# for idx in [1, 30, 60, 80, 119]:
# psi_func = lambda phi: sp.dot(psi_coeffs.T[idx] , [b(phi) for b in basis_functions])
# with quick.Plot() as qp:
# qp.plot(phis, psis2D.T[idx],'o')
# qp.plot(phi0, sp.vectorize(psi_func)(phi0))
## psi coeffs
# with quick.Plot() as qp:
# vals = abs(psi_coeffs)
# print(sp.amin(vals))
# norm = quick.SymLogNorm(10 **-4, vmin=10 ** -3, vmax=1)
# cmap = 'jet'
# qp.imshow(vals, origin='lower', norm=norm, cmap=cmap)
# qp.colorbar(norm=norm, cmap=cmap)
### theta
# phi0 = sp.linspace(0, 2 * sp.pi, endpoint=False)
# for idx in [0, 30, 60, 119]:
# theta_func = lambda phi: sp.dot(theta_coeffs.T[idx], [b(phi) for b in basis_functions])
# with quick.Plot() as qp:
# qp.plot(phis, thetas2D.T[idx],'o')
# qp.plot(phi0, sp.vectorize(theta_func)(phi0))
## theta coeffs
# with quick.Plot() as qp:
# vals = abs(theta_coeffs)
# print(sp.amin(vals))
# norm = quick.SymLogNorm(10 **-4, vmin=10 ** -3, vmax=1)
# cmap = 'jet'
# qp.imshow(vals, origin='lower', norm=norm, cmap=cmap)
# qp.colorbar(norm=norm, cmap=cmap)
### Shapes
# import mayavi.mlab as mlab
#
# colors = quick.get_colors(len(thetas2D), cmap=quick.default_cyclic_colormap)
# for color, thetas, psis in zip(colors, thetas2D, psis2D):
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# mlab_color = tuple(color[:3])
# # mlab.plot3d(rr[:, 2], rr[:, 0], rr[:, 1], color=mlab_color,tube_radius=1)
# mlab.points3d(rr[:, 2], rr[:, 0], rr[:, 1], color=mlab_color, scale_factor=1)
#
# phis0 = phis # sp.linspace(0, 2 * sp.pi, endpoint=False)#
# B0 = sp.array([[b(phi) for b in basis_functions] for phi in phis0])
#
# psis2D0 = B0 @ psi_coeffs # matmul
# thetas2D0 = B0 @ theta_coeffs
#
# colors0 = quick.get_colors(len(thetas2D0), cmap=quick.default_cyclic_colormap)
# for color, thetas, psis in zip(colors0, thetas2D0, psis2D0):
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# mlab_color = tuple(color[:3])
# mlab.plot3d(rr[:, 2], rr[:, 0], rr[:, 1], color=mlab_color, tube_radius=1)
#
# # Plane
# X = [[-100, -100], [100, 100]]
# Y = [[-100, 100], [-100, 100]]
# Z = [[0, 0], [0, 0]]
# mlab.mesh(X, Y, Z)
#
# mlab.show()
## Shapes projections
# from matplotlib.lines import Line2D
#
# phis0 = phis
# B0 = sp.array([[b(phi) for b in basis_functions] for phi in phis0])
#
# psis2D0 = B0 @ psi_coeffs
# thetas2D0 = B0 @ theta_coeffs
# legend_elements = [Line2D([0], [0], color='black', lw=2, label='original'),
# Line2D([0], [0], marker='o', color='w', markerfacecolor='b', markersize=15, label='Fourier')]
#
# ms = 2
# filename = None # os.path.join(output_folder, 'plot_xy_YZ.png')
# with quick.Plot() as qp:
# qp.set_aspect(1)
# qp.xlim(-90, 160)
#
# qp.xlabel('x (Y)')
# qp.ylabel('y (Z)')
# colors = quick.get_colors(len(thetas2D), cmap=quick.default_cyclic_colormap)
# for color, thetas, psis, thetas0, psis0 in zip(colors, thetas2D, psis2D, thetas2D0, psis2D0):
# rr0 = curve3d.build_curve((0, 0, 0), ds, thetas0, psis0)
# qp.plot(rr0[:, 0], rr0[:, 1], color=color, markersize=ms, alpha=0.5)
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# qp.plot(rr[:, 0], rr[:, 1], color='black', lw=0.5)
#
# qp.legend(handles=legend_elements)
#
# filename = None # os.path.join(output_folder, 'plot_xy_YZ.png')
# with quick.Plot() as qp:
# qp.set_aspect(1)
# qp.xlim(-90, 160)
#
# qp.xlabel('x (Y)')
# qp.ylabel('z (X)')
# colors = quick.get_colors(len(thetas2D), cmap=quick.default_cyclic_colormap)
# for color, thetas, psis, thetas0, psis0 in zip(colors, thetas2D, psis2D, thetas2D0, psis2D0):
# rr0 = curve3d.build_curve((0, 0, 0), ds, thetas0, psis0)
# qp.plot(rr0[:, 0], rr0[:, 2], color=color, markersize=ms, alpha=0.5)
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# qp.plot(rr[:, 0], rr[:, 2], color='black', lw=0.5)
#
# qp.legend(handles=legend_elements)
#
# filename = None # os.path.join(output_folder, 'plot_xy_YZ.png')
# with quick.Plot() as qp:
# qp.set_aspect(1)
# qp.xlim(-90, 160)
#
# qp.ylabel('y (Z)')
# qp.xlabel('z (X)')
# colors = quick.get_colors(len(thetas2D), cmap=quick.default_cyclic_colormap)
# for color, thetas, psis, thetas0, psis0 in zip(colors, thetas2D, psis2D, thetas2D0, psis2D0):
# rr0 = curve3d.build_curve((0, 0, 0), ds, thetas0, psis0)
# qp.plot(rr0[:, 2], rr0[:, 1], color=color, markersize=ms, alpha=0.5)
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# qp.plot(rr[:, 2], rr[:, 1], color='black', lw=0.5)
#
# qp.legend(handles=legend_elements)
### Tangent trajectories on a unit sphere
# import mayavi.mlab as mlab
#
#
# def get_colors(num, cmap, minval=0.0, maxval=1.0, endpoint=True):
# '''
# :param num: How many colors to return
# :param minval, maxval: truncate colormap by choosing numbers between 0 and 1 (untruncated = [0,1])
# :param cmap: e.g. 'jet' 'viridis' 'RdBu_r' 'hsv'
# :return:
# '''
# if isinstance(cmap, str):
# cmap = plt.get_cmap(cmap) #
# return cmap(np.linspace(minval, maxval, num, endpoint=endpoint))
#
#
# phi0 = np.linspace(0, 2 * np.pi, 100, endpoint=False)
# B0 = np.array([[b(phi) for b in basis_functions] for phi in phi0])
# psis2D0 = B0 @ psi_coeffs # matmul
# thetas2D0 = B0 @ theta_coeffs
#
# tangents2D0 = np.array(np.vectorize(curve3d.get_dr)(np.ones_like(thetas2D0), thetas2D0, psis2D0))
# tangents2D0 = tangents2D0.transpose((1, 2, 0)) # (21, 120, 3)
#
# # Create a sphere
# r = 1
# theta, psi = np.mgrid[0:pi:101j, 0:2 * pi:101j]
# # Spherical coordinates
# z = r * np.cos(theta)
# x = r * np.sin(theta) * np.cos(psi)
# y = r * np.sin(theta) * np.sin(psi)
#
# s = x
# mlab.mesh(x, y, z, scalars=s, colormap='jet')
#
# # Plot trajectories
# s_ids = list(range(120)) # [0, 30, 70, 119] # 0,4 - knots?! # # [0, 10, 30, 50, 70, 90, 110, 119]
# colors = get_colors(len(s_ids)) # From dark to light in viridis
# for c,s_id in zip(colors,s_ids):
# tangents = tangents2D0[:, s_id, :]
# color = tuple(c[:3])
# mlab.plot3d(tangents[:,0], tangents[:,1], tangents[:,2],color=color)
#
#
# tangents2D = np.array(np.vectorize(curve3d.get_dr)(np.ones_like(thetas2D), thetas2D, psis2D))
# tangents2D = tangents2D.transpose((1, 2, 0)) # (21, 120, 3)
# # Plot old trajectories
# colors = get_colors(len(s_ids)) # From dark to light in viridis
# for c,s_id in zip(colors,s_ids):
# tangents = tangents2D[:, s_id, :]
# color = tuple(c[:3])
# mlab.points3d(tangents[:,0], tangents[:,1], tangents[:,2],color=(1,1,1), scale_factor=0.05)
#
# mlab.show()
### Point positions and velocity (simple finite difference)
# phis0 = sp.linspace(0, 2 * sp.pi, endpoint=False)
# B0 = sp.array([[b(phi) for b in basis_functions] for phi in phis0])
#
# psis2D0 = B0 @ psi_coeffs # matmul
# thetas2D0 = B0 @ theta_coeffs
#
# rr3D0 = []
# for thetas, psis in zip(thetas2D0, psis2D0):
# rr = curve3d.build_curve((0, 0, 0), ds, thetas, psis)
# rr3D0.append(rr)
#
# rr3D0 = sp.array(rr3D0)
#
# s_id = 60
# # New vals
# rr0 = rr3D0[:, s_id, :]
#
# vel0 = sp.diff(rr0, axis=0, append=[rr0[0]]) / sp.diff(phis0, append=[phis0[0] + 2 * pi])[:,sp.newaxis]
# vel0_norm = lin.norm(vel0, axis=-1)
# # Old vals
# rr = rr3D[:, s_id, :]
# vel = sp.diff(rr, axis=0, append=[rr[0]]) / sp.diff(phis, append=[phis[0] + 2 * pi])[:,sp.newaxis]
# vel_norm = lin.norm(vel, axis=-1)
#
# colors = ['r','g','b']
# # COORDS
# filename = None # os.path.join(output_folder, 'sid_{}/coords_nharm_{}.png'.format(s_id,nharm))
# with quick.Plot(filename) as qp:
# qp.title("x,y,z, s_id={}, nharm={}".format(s_id,nharm))
# for i in range(3):
# qp.plot(phis0, rr0[:,i], c=colors[i])
# qp.plot(phis, rr[:,i], 'o',c=colors[i])
#
# # # VELS
# # with quick.Plot() as qp:
# # qp.title("vx,vy,vz, s_id={}".format(s_id))
# # for i in range(3):
# # qp.plot(phis0, vel0[:,i], c=colors[i])
# # qp.plot(phis, vel[:,i], 'o', c=colors[i])
# # # VELS NORM
#
# filename = None # os.path.join(output_folder, 'sid_{}/vel_norm_nharm_{}.png'.format(s_id, nharm))
# with quick.Plot(filename) as qp:
# qp.title("Velocity_tot, s_id={}, nharm={}".format(s_id,nharm))
# qp.plot(phis0, vel0_norm)
# qp.plot(phis, vel_norm, 'o')