forked from jacons/Neural_Network_from_scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivations.py
58 lines (33 loc) · 1.27 KB
/
Activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import math
import numpy as np
class Activation:
def __init__(self, name: str, phi, dPhi):
"""
Utility class used for manage name,function and its derivative for all activation function
:param name: Name of activation function, shown in the title of chats
:param phi: pointer to activation function
:param dPhi: pointer to derivative of activation function
"""
self.name = name
self.phi = phi
self.dPhi = dPhi
def linear(x): return x
def d_linear(x): return 1
def relu(x): return max(0, x)
def LReLU(x): return x if x >= 0 else 0.01 * x
def d_LReLU(x): return 1 if x >= 0 else 0.01
def d_relu(x): return 0 if x < 0 else 1
def sigmoid(x): return 1 / (1 + np.exp(-x))
def d_sigmoid(x):
s = sigmoid(x)
return s * (1 - s)
def tanH(x): return np.tanh(x)
def d_tanH(x): return 1 - math.pow(np.tanh(x), 2)
# Dictionary of activation function used in the grid search configuration
actF = {
"linear": Activation("linear", linear, d_linear),
"relu": Activation("ReLu", relu, d_relu),
"sig": Activation("Sigmoid", sigmoid, d_sigmoid),
"tan": Activation("tanH", tanH, d_tanH),
"lRelu": Activation("LReLu", LReLU, d_LReLU),
}