forked from jacons/Neural_Network_from_scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainer.py
170 lines (138 loc) · 7.22 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import math
from NeuralN import *
class Trainer:
def __init__(self, tr, vl, l_rate, metric):
"""
Configure the neural network by hyperparameter and dataset
:param tr: Training set using for train the network
:param vl: Validation set using to measure of generalization
:param l_rate: function of manage weights decay
:param metric: function to evaluate the error
"""
self.__tr = tr # Training set
self.__vl = vl # Validation set
self.__sizeTR: int = len(tr) # Training set size
self.__sizeVL: int = len(vl) # Validation set size
self.__features = 0
self.__mB = None # Array of minibatch
self.__sequenceMB = None # Array that contain a sequence of number using by minibatch
self.__sequenceVL = range(0, self.__sizeVL) # small improvement for speed up
self.__batchSize: int = 1 # Bach size for minibatch technique
self.__maxEpochs = 1000 # Number of epochs
self.__patience = 0 # number of consecutive epoch for witch validation error increases
self.__stopping = 0 # countdown for early stopping
self.__metric = metric # evaluate error
self.__l_rate = l_rate # learning rate function
self.__mse_tr: list = [] # Train set error's sequence (during the epochs)
self.__mse_vs: list = [] # Validation set error's sequence (during the epochs)
self.__nn = None
def set(self, features: int, lmd: float, alfa: float, batch_size: int,
max_epochs: int, nesterov: bool, patience: int):
"""
Initialize hyperparameters for the neural network
:param features: Number of the input
:param lmd: lambda value for regularization
:param alfa: alfa value for momentum
:param batch_size: bach size for mini batch technique
:param max_epochs: max epochs for the training phase
:param patience: number of consecutive epoch for witch validation error increases
:param nesterov: boolean value, True -> NAG , False -> CM
:return: None
"""
if lmd < 0 or alfa < 0 or max_epochs < 0 or batch_size <= 0 or batch_size > self.__sizeTR:
print("Bad initialization values")
exit()
self.__features = features # Number of features
self.__batchSize: int = batch_size # Bach size for minibatch technique
self.__maxEpochs: int = max_epochs # Max number of epochs
# If patience is zero, we don't take into account the early stopping
self.__patience: int = self.__maxEpochs if patience == 0 else patience
self.__stopping = self.__patience
batches = math.ceil(self.__sizeTR / batch_size) # Perform the numer of batch to create
self.__mB = np.array_split(self.__tr, batches) # splitting dataset
self.__sequenceMB = np.arange(0, batches, 1) # create a sequence 1....batches
self.__nn = NeuralNetwork(features=features, lmd=lmd, alfa=alfa, metric=self.__metric,
nesterov=nesterov)
def addLayer(self, units, phi, d_phi):
"""
Adding a layer inside the network, it requires the number of units and the activation function
for the layer
:param units: Number of hidden units
:param phi: Activation function used in feedforward
:param d_phi: Derivative of activation function used in backpropagation
:return: None
"""
self.__nn.addLayer(neuron=units, phi=phi, d_phi=d_phi)
def compile(self):
"""
Initializing networks' weights and other fancy stuff
:return: None
"""
self.__nn.kernelInitialization()
def fit(self):
"""
Training the network
:return: None
"""
print("Start training phase!")
current = 0 # current epoch
while current < self.__maxEpochs and self.__stopping != 0:
# --------------- Training phase ---------------
total_error = 0 # Total error respect all training
np.random.shuffle(self.__sequenceMB) # make a permutation of sequenceMB
for mb in self.__sequenceMB: # for each mini batches
b_length = len(self.__mB[mb]) # retrieve batch's length
for k in range(0, b_length): # for each element in batch "mb"
total_error += self.__nn.train(
self.__mB[mb][k][0:self.__features], self.__mB[mb][k][self.__features:])
self.__nn.update(eta=self.__l_rate(current), batch_size=b_length)
self.__mse_tr.append(total_error / self.__sizeTR)
# --------------- Training phase ---------------
# --------------- Evaluate Validation ---------------
total_error = 0 # Total error respect all training
for i in self.__sequenceVL:
vl_error = self.__vl[i][self.__features:] - self.__nn.predict(self.__vl[i][0:self.__features])
total_error += self.__metric(vl_error)
self.__mse_vs.append(total_error / self.__sizeVL)
# --------------- Evaluate Validation ---------------
# --------------- Check Early stopping ---------------
if current > 10:
if self.__mse_vs[-1] > self.__mse_vs[-2]:
self.__stopping -= 1
elif self.__mse_vs[-1] < 0.0005:
self.__stopping = 0
else:
self.__stopping = self.__patience
# --------------- Check Early stopping ---------------
current += 1
print("Stopped at epoch", current, "of", self.__maxEpochs)
return
def measureTestSet(self, testSet):
"""
After training, we can evaluate the trained network with testSet which is the
portion of dataset that the network has never seen. (Model assessment)
:param testSet: examples of testSet
:return: return the error on testSet
"""
# --------------- Evaluate Test ---------------
total_error = 0 # Total error respect all training
for ex in testSet: # for each testSet example
ts_error = ex[self.__features:] - self.__nn.predict(ex[0:self.__features])
total_error += self.__metric(ts_error)
# --------------- Evaluate Test ---------------
return total_error / len(testSet) # length of entire test set
def performBlindTS(self, blindTS):
"""
Taken a final model, we can perform the result for blind testSet, of course we don't have
the results by dataset (instead of training,validation and internal test set), indeed we return
only the predicted value of the trained network
:param blindTS: examples of blindTestSet
:return: list of outputs' network
"""
results = []
for ex in blindTS:
results.append(self.__nn.predict(ex))
return results
def getSequences(self):
# return Training and Validation error sequence (During the epochs)
return self.__mse_tr, self.__mse_vs