-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathsam.py
125 lines (111 loc) · 3.7 KB
/
sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch as T
from torch.autograd import Variable as var
import numpy as np
from torch.nn.utils.rnn import pad_packed_sequence as pad
from torch.nn.utils.rnn import pack_padded_sequence as pack
from torch.nn.utils.rnn import PackedSequence
from torch.nn.init import orthogonal_, xavier_uniform_
from .util import *
from .sparse_memory import SparseMemory
from .dnc import DNC
class SAM(DNC):
def __init__(
self,
input_size,
hidden_size,
rnn_type='lstm',
num_layers=1,
num_hidden_layers=2,
bias=True,
batch_first=True,
dropout=0,
bidirectional=False,
nr_cells=5000,
sparse_reads=4,
read_heads=4,
cell_size=10,
nonlinearity='tanh',
gpu_id=-1,
independent_linears=False,
share_memory=True,
debug=False,
clip=20
):
super(SAM, self).__init__(
input_size=input_size,
hidden_size=hidden_size,
rnn_type=rnn_type,
num_layers=num_layers,
num_hidden_layers=num_hidden_layers,
bias=bias,
batch_first=batch_first,
dropout=dropout,
bidirectional=bidirectional,
nr_cells=nr_cells,
read_heads=read_heads,
cell_size=cell_size,
nonlinearity=nonlinearity,
gpu_id=gpu_id,
independent_linears=independent_linears,
share_memory=share_memory,
debug=debug,
clip=clip
)
self.sparse_reads = sparse_reads
# override SDNC memories with SAM
self.memories = []
for layer in range(self.num_layers):
# memories for each layer
if not self.share_memory:
self.memories.append(
SparseMemory(
input_size=self.output_size,
mem_size=self.nr_cells,
cell_size=self.w,
sparse_reads=self.sparse_reads,
read_heads=self.read_heads,
gpu_id=self.gpu_id,
mem_gpu_id=self.gpu_id,
independent_linears=self.independent_linears
)
)
setattr(self, 'rnn_layer_memory_' + str(layer), self.memories[layer])
# only one memory shared by all layers
if self.share_memory:
self.memories.append(
SparseMemory(
input_size=self.output_size,
mem_size=self.nr_cells,
cell_size=self.w,
sparse_reads=self.sparse_reads,
read_heads=self.read_heads,
gpu_id=self.gpu_id,
mem_gpu_id=self.gpu_id,
independent_linears=self.independent_linears
)
)
setattr(self, 'rnn_layer_memory_shared', self.memories[0])
def _debug(self, mhx, debug_obj):
if not debug_obj:
debug_obj = {
'memory': [],
'visible_memory': [],
'read_weights': [],
'write_weights': [],
'read_vectors': [],
'least_used_mem': [],
'usage': [],
'read_positions': []
}
debug_obj['memory'].append(mhx['memory'][0].data.cpu().numpy())
debug_obj['visible_memory'].append(mhx['visible_memory'][0].data.cpu().numpy())
debug_obj['read_weights'].append(mhx['read_weights'][0].unsqueeze(0).data.cpu().numpy())
debug_obj['write_weights'].append(mhx['write_weights'][0].unsqueeze(0).data.cpu().numpy())
debug_obj['read_vectors'].append(mhx['read_vectors'][0].data.cpu().numpy())
debug_obj['least_used_mem'].append(mhx['least_used_mem'][0].unsqueeze(0).data.cpu().numpy())
debug_obj['usage'].append(mhx['usage'][0].unsqueeze(0).data.cpu().numpy())
debug_obj['read_positions'].append(mhx['read_positions'][0].unsqueeze(0).data.cpu().numpy())
return debug_obj