-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathdefault.py
382 lines (351 loc) · 14.2 KB
/
default.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from copy import deepcopy
from typing import List, Optional, Union
import habitat_baselines.config.default
import numpy as np
from habitat.config.default import CONFIG_FILE_SEPARATOR
from habitat.config.default import Config as CN
from habitat_extensions.config.default import (
get_extended_config as get_task_config,
)
# ----------------------------------------------------------------------------
# EXPERIMENT CONFIG
# ----------------------------------------------------------------------------
_C = CN()
_C.BASE_TASK_CONFIG_PATH = "habitat_extensions/config/vlnce_task.yaml"
_C.TASK_CONFIG = CN() # task_config will be stored as a config node
_C.CMD_TRAILING_OPTS = [] # store command line options as list of strings
_C.TRAINER_NAME = "dagger"
_C.ENV_NAME = "VLNCEDaggerEnv"
_C.SIMULATOR_GPU_IDS = [0]
_C.VIDEO_OPTION = [] # options: "disk", "tensorboard"
_C.VIDEO_DIR = "data/videos/debug"
_C.TENSORBOARD_DIR = "data/tensorboard_dirs/debug"
_C.RESULTS_DIR = "data/checkpoints/pretrained/evals"
# ----------------------------------------------------------------------------
# EVAL CONFIG
# ----------------------------------------------------------------------------
_C.EVAL = CN()
_C.EVAL.SPLIT = "val_seen"
_C.EVAL.EPISODE_COUNT = -1
_C.EVAL.LANGUAGES = ["en-US", "en-IN"]
_C.EVAL.SAMPLE = False
_C.EVAL.SAVE_RESULTS = True
_C.EVAL.EVAL_NONLEARNING = False
_C.EVAL.NONLEARNING = CN()
_C.EVAL.NONLEARNING.AGENT = "RandomAgent"
# ----------------------------------------------------------------------------
# INFERENCE CONFIG
# ----------------------------------------------------------------------------
_C.INFERENCE = CN()
_C.INFERENCE.SPLIT = "test"
_C.INFERENCE.LANGUAGES = ["en-US", "en-IN"]
_C.INFERENCE.SAMPLE = False
_C.INFERENCE.USE_CKPT_CONFIG = True
_C.INFERENCE.CKPT_PATH = "data/checkpoints/CMA_PM_DA_Aug.pth"
_C.INFERENCE.PREDICTIONS_FILE = "predictions.json"
_C.INFERENCE.INFERENCE_NONLEARNING = False
_C.INFERENCE.NONLEARNING = CN()
_C.INFERENCE.NONLEARNING.AGENT = "RandomAgent"
_C.INFERENCE.FORMAT = "rxr" # either 'rxr' or 'r2r'
# ----------------------------------------------------------------------------
# IMITATION LEARNING CONFIG
# ----------------------------------------------------------------------------
_C.IL = CN()
_C.IL.lr = 2.5e-4
_C.IL.batch_size = 5
# number of network update rounds per iteration
_C.IL.epochs = 4
# if true, uses class-based inflection weighting
_C.IL.use_iw = True
# inflection coefficient for RxR training set GT trajectories (guide): 1.9
# inflection coefficient for R2R training set GT trajectories: 3.2
_C.IL.inflection_weight_coef = 3.2
# load an already trained model for fine tuning
_C.IL.load_from_ckpt = False
_C.IL.ckpt_to_load = "data/checkpoints/ckpt.0.pth"
# if True, loads the optimizer state, epoch, and step_id from the ckpt dict.
_C.IL.is_requeue = False
# ----------------------------------------------------------------------------
# IL: RECOLLECT TRAINER CONFIG
# ----------------------------------------------------------------------------
_C.IL.RECOLLECT_TRAINER = CN()
_C.IL.RECOLLECT_TRAINER.preload_trajectories_file = False
_C.IL.RECOLLECT_TRAINER.trajectories_file = (
"data/trajectories_dirs/debug/trajectories.json.gz"
)
# if set to a positive int, episodes with longer paths are ignored in training
_C.IL.RECOLLECT_TRAINER.max_traj_len = -1
# if set to a positive int, effective_batch_size must be some multiple of
# IL.batch_size. Gradient accumulation enables an arbitrarily high "effective"
# batch size.
_C.IL.RECOLLECT_TRAINER.effective_batch_size = -1
_C.IL.RECOLLECT_TRAINER.preload_size = 30
_C.IL.RECOLLECT_TRAINER.gt_file = (
"data/datasets/RxR_VLNCE_v0/{split}/{split}_{role}_gt.json.gz"
)
# ----------------------------------------------------------------------------
# IL: DAGGER CONFIG
# ----------------------------------------------------------------------------
_C.IL.DAGGER = CN()
# dataset aggregation rounds (1 for teacher forcing)
_C.IL.DAGGER.iterations = 10
_C.IL.DAGGER.start_iteration = 0
# episodes collected per iteration (size of dataset for teacher forcing)
_C.IL.DAGGER.update_size = 5000
# probability of taking the expert action (1.0 for teacher forcing)
_C.IL.DAGGER.p = 0.75
_C.IL.DAGGER.expert_policy_sensor = "SHORTEST_PATH_SENSOR"
_C.IL.DAGGER.expert_policy_sensor_uuid = "shortest_path_sensor"
_C.IL.DAGGER.lmdb_map_size = 1.2e12
# if True, saves data to disk in fp16 and converts back to fp32 when loading.
_C.IL.DAGGER.lmdb_fp16 = False
# How often to commit the writes to the DB, less commits is
# better, but everything must be in memory until a commit happens.
_C.IL.DAGGER.lmdb_commit_frequency = 500
# If True, load precomputed features directly from lmdb_features_dir.
_C.IL.DAGGER.preload_lmdb_features = False
_C.IL.DAGGER.lmdb_features_dir = (
"data/trajectories_dirs/debug/trajectories.lmdb"
)
_C.IL.DAGGER.drop_existing_lmdb_features = True
# ----------------------------------------------------------------------------
# RL CONFIG
# ----------------------------------------------------------------------------
_C.RL = CN()
_C.RL.REWARD_MEASURE = "waypoint_reward_measure"
_C.RL.SUCCESS_MEASURE = "success"
_C.RL.NUM_UPDATES = 200000
_C.RL.LOG_INTERVAL = 10
_C.RL.CHECKPOINT_INTERVAL = 250
# ----------------------------------------------------------------------------
# POLICY CONFIG
# ----------------------------------------------------------------------------
_C.RL.POLICY = CN()
_C.RL.POLICY.OBS_TRANSFORMS = CN()
_C.RL.POLICY.OBS_TRANSFORMS.ENABLED_TRANSFORMS = []
_C.RL.POLICY.OBS_TRANSFORMS.OBS_STACK = CN()
_C.RL.POLICY.OBS_TRANSFORMS.OBS_STACK.SENSOR_REWRITES = [
(
"rgb",
[
"rgb",
"rgb_1",
"rgb_2",
"rgb_3",
"rgb_4",
"rgb_5",
"rgb_6",
"rgb_7",
"rgb_8",
"rgb_9",
"rgb_10",
"rgb_11",
],
),
(
"depth",
[
"depth",
"depth_1",
"depth_2",
"depth_3",
"depth_4",
"depth_5",
"depth_6",
"depth_7",
"depth_8",
"depth_9",
"depth_10",
"depth_11",
],
),
]
_C.RL.POLICY.OBS_TRANSFORMS.CENTER_CROPPER_PER_SENSOR = CN()
_C.RL.POLICY.OBS_TRANSFORMS.CENTER_CROPPER_PER_SENSOR.SENSOR_CROPS = [
("rgb", (224, 224)),
("depth", (256, 256)),
]
# ----------------------------------------------------------------------------
# PROXIMAL POLICY OPTIMIZATION (PPO)
# ----------------------------------------------------------------------------
_C.RL.PPO = CN()
_C.RL.PPO.clip_param = 0.2
_C.RL.PPO.ppo_epoch = 2
_C.RL.PPO.num_mini_batch = 4
_C.RL.PPO.value_loss_coef = 0.5
_C.RL.PPO.clip_value_loss = True
_C.RL.PPO.entropy_coef = 0.01
_C.RL.PPO.pano_entropy_coef = 1.0
_C.RL.PPO.offset_entropy_coef = 0.0
_C.RL.PPO.distance_entropy_coef = 0.0
_C.RL.PPO.lr = 2.0e-4
_C.RL.PPO.eps = 1e-5
_C.RL.PPO.max_grad_norm = 0.2
_C.RL.PPO.num_steps = 16
_C.RL.PPO.use_gae = True
_C.RL.PPO.use_linear_lr_decay = False
_C.RL.PPO.use_linear_clip_decay = False
_C.RL.PPO.gamma = 0.99
_C.RL.PPO.tau = 0.95
_C.RL.PPO.reward_window_size = 50
_C.RL.PPO.use_normalized_advantage = False
# regularize offset. maximum loss: 0.2618 * 0.1146 = 0.03
_C.RL.PPO.offset_regularize_coef = 0.1146
# ----------------------------------------------------------------------------
# DECENTRALIZED DISTRIBUTED PROXIMAL POLICY OPTIMIZATION (DD-PPO)
# ----------------------------------------------------------------------------
_C.RL.DDPPO = CN()
_C.RL.DDPPO.sync_frac = 0.6
_C.RL.DDPPO.distrib_backend = "NCCL" # or GLOO
_C.RL.DDPPO.reset_critic = True
_C.RL.DDPPO.start_from_requeue = False
_C.RL.DDPPO.requeue_path = "data/interrupted_state.pth"
# ----------------------------------------------------------------------------
# MODELING CONFIG
# ----------------------------------------------------------------------------
_C.MODEL = CN()
_C.MODEL.policy_name = "CMAPolicy"
_C.MODEL.normalize_rgb = False
_C.MODEL.ablate_depth = False
_C.MODEL.ablate_rgb = False
_C.MODEL.ablate_instruction = False
_C.MODEL.INSTRUCTION_ENCODER = CN()
_C.MODEL.INSTRUCTION_ENCODER.sensor_uuid = "instruction"
_C.MODEL.INSTRUCTION_ENCODER.vocab_size = 2504
_C.MODEL.INSTRUCTION_ENCODER.use_pretrained_embeddings = True
_C.MODEL.INSTRUCTION_ENCODER.embedding_file = (
"data/datasets/R2R_VLNCE_v1-3_preprocessed/embeddings.json.gz"
)
_C.MODEL.INSTRUCTION_ENCODER.dataset_vocab = (
"data/datasets/R2R_VLNCE_v1-3_preprocessed/train/train.json.gz"
)
_C.MODEL.INSTRUCTION_ENCODER.fine_tune_embeddings = False
_C.MODEL.INSTRUCTION_ENCODER.embedding_size = 50
_C.MODEL.INSTRUCTION_ENCODER.hidden_size = 128
_C.MODEL.INSTRUCTION_ENCODER.rnn_type = "LSTM"
_C.MODEL.INSTRUCTION_ENCODER.final_state_only = True
_C.MODEL.INSTRUCTION_ENCODER.bidirectional = False
_C.MODEL.RGB_ENCODER = CN()
_C.MODEL.RGB_ENCODER.cnn_type = "TorchVisionResNet50"
_C.MODEL.RGB_ENCODER.output_size = 256
_C.MODEL.RGB_ENCODER.trainable = False
_C.MODEL.DEPTH_ENCODER = CN()
_C.MODEL.DEPTH_ENCODER.cnn_type = "VlnResnetDepthEncoder"
_C.MODEL.DEPTH_ENCODER.output_size = 128
# type of resnet to use
_C.MODEL.DEPTH_ENCODER.backbone = "resnet50"
# path to DDPPO resnet weights
_C.MODEL.DEPTH_ENCODER.ddppo_checkpoint = (
"data/ddppo-models/gibson-2plus-resnet50.pth"
)
_C.MODEL.DEPTH_ENCODER.trainable = False
_C.MODEL.STATE_ENCODER = CN()
_C.MODEL.STATE_ENCODER.hidden_size = 512
_C.MODEL.STATE_ENCODER.rnn_type = "GRU"
_C.MODEL.PROGRESS_MONITOR = CN()
_C.MODEL.PROGRESS_MONITOR.use = False
_C.MODEL.PROGRESS_MONITOR.alpha = 1.0 # loss multiplier
_C.MODEL.SEQ2SEQ = CN()
_C.MODEL.SEQ2SEQ.use_prev_action = False
_C.MODEL.WAYPOINT = CN()
# if False, the distance is 0.25m (heading prediction network, HPN)
_C.MODEL.WAYPOINT.predict_distance = True
# if True, predict distance from a truncated normal distribution.
# if False, predict from discrete categorical candidates.
_C.MODEL.WAYPOINT.continuous_distance = True
_C.MODEL.WAYPOINT.min_distance_var = 0.0625 # a stddev of 0.25m
_C.MODEL.WAYPOINT.max_distance_var = 3.52 # a stddev of (range / 2)
_C.MODEL.WAYPOINT.max_distance_prediction = 2.75
_C.MODEL.WAYPOINT.min_distance_prediction = 0.25
# 6 distances gives 0.5m increments for a distance range of [0.25, 2.75]
_C.MODEL.WAYPOINT.discrete_distances = 6
# if False, predict heading from 12 equiangular candidates.
_C.MODEL.WAYPOINT.predict_offset = True
_C.MODEL.WAYPOINT.continuous_offset = True
_C.MODEL.WAYPOINT.min_offset_var = 0.0110 # stddev of 6 degrees
_C.MODEL.WAYPOINT.max_offset_var = 0.0685 # stddev of (range / 2)
# 7 offsets gives 5deg increments for an offset range [-15deg, 15deg]
_C.MODEL.WAYPOINT.discrete_offsets = 7
_C.MODEL.WAYPOINT.offset_temperature = 1.0
def purge_keys(config: CN, keys: List[str]) -> None:
for k in keys:
del config[k]
config.register_deprecated_key(k)
def get_config(
config_paths: Optional[Union[List[str], str]] = None,
opts: Optional[list] = None,
) -> CN:
"""Create a unified config with default values. Initialized from the
habitat_baselines default config. Overwritten by values from
`config_paths` and overwritten by options from `opts`.
Args:
config_paths: List of config paths or string that contains comma
separated list of config paths.
opts: Config options (keys, values) in a list (e.g., passed from
command line into the config. For example, `opts = ['FOO.BAR',
0.5]`. Argument can be used for parameter sweeping or quick tests.
"""
config = CN()
config.merge_from_other_cfg(habitat_baselines.config.default._C)
purge_keys(config, ["SIMULATOR_GPU_ID", "TEST_EPISODE_COUNT"])
config.merge_from_other_cfg(_C.clone())
if config_paths:
if isinstance(config_paths, str):
if CONFIG_FILE_SEPARATOR in config_paths:
config_paths = config_paths.split(CONFIG_FILE_SEPARATOR)
else:
config_paths = [config_paths]
prev_task_config = ""
for config_path in config_paths:
config.merge_from_file(config_path)
if config.BASE_TASK_CONFIG_PATH != prev_task_config:
config.TASK_CONFIG = get_task_config(
config.BASE_TASK_CONFIG_PATH
)
prev_task_config = config.BASE_TASK_CONFIG_PATH
if opts:
config.CMD_TRAILING_OPTS = opts
config.merge_from_list(opts)
config.freeze()
return config
def add_pano_sensors_to_config(config: CN) -> CN:
"""Dynamically adds RGB and Depth cameras to config.TASK_CONFIG, forming
an N-frame panorama. The PanoRGB and PanoDepth observation transformers
can be used to stack these frames together.
"""
num_cameras = config.TASK_CONFIG.TASK.PANO_ROTATIONS
config.defrost()
orient = [(0, np.pi * 2 / num_cameras * i, 0) for i in range(num_cameras)]
sensor_uuids = ["rgb"]
if "RGB_SENSOR" in config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS:
config.TASK_CONFIG.SIMULATOR.RGB_SENSOR.ORIENTATION = orient[0]
for camera_id in range(1, num_cameras):
camera_template = f"RGB_{camera_id}"
camera_config = deepcopy(config.TASK_CONFIG.SIMULATOR.RGB_SENSOR)
camera_config.ORIENTATION = orient[camera_id]
camera_config.UUID = camera_template.lower()
sensor_uuids.append(camera_config.UUID)
setattr(
config.TASK_CONFIG.SIMULATOR, camera_template, camera_config
)
config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS.append(
camera_template
)
sensor_uuids = ["depth"]
if "DEPTH_SENSOR" in config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS:
config.TASK_CONFIG.SIMULATOR.DEPTH_SENSOR.ORIENTATION = orient[0]
for camera_id in range(1, num_cameras):
camera_template = f"DEPTH_{camera_id}"
camera_config = deepcopy(config.TASK_CONFIG.SIMULATOR.DEPTH_SENSOR)
camera_config.ORIENTATION = orient[camera_id]
camera_config.UUID = camera_template.lower()
sensor_uuids.append(camera_config.UUID)
setattr(
config.TASK_CONFIG.SIMULATOR, camera_template, camera_config
)
config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS.append(
camera_template
)
config.SENSORS = config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS
config.freeze()
return config