-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshapiro_test.py
163 lines (123 loc) · 5.73 KB
/
shapiro_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 28 10:00:37 2023
@author: Jason.Roth
"""
import os
import pandas as pd
import numpy as np
from datetime import datetime as dt
import scipy as sp
######## INPUT VARIABLES ######################################################
## metric: EMC, LOAD, YIELD
metric = 'YIELD'
## name of file containing paired events of control and treatment site data
data_file ="AR_focus_data_{0}_final.csv".format(metric)
## minimum event dqi to plot
min_evt_dqi = 1
min_par_dqi = 1
#### names of columns for use in logic and labeling
## site indicator column, control or treatment: n>0 is treatment
site_ind_col= 'site_indicator'
## phase indicator column, baseline or treatment: n>0 treatment
phas_ind_col = 'phase_indicator'
## date of event
date_col = 'date'
## project name column
proj_col = 'project_title'
## columns of observations to make paired plots for
par_cols = ['peak_discharge_cfs', 'runoff_in', 'NH4_mg.l', 'nitrate_nitrite_mg.l',
'TN_mg.l', 'dissolvedp_mg.l', 'TP_mg.l', 'TSS_mg.l']
dqi_cols = ['runoff_dqi', 'runoff_dqi', 'NH4_dqi', 'nitrate_nitrite_dqi',
'TN_dqi', 'dissolvedP_dqi', 'TP_dqi', 'TSS_dqi']
## min value of data to plot, just to make sure nan and zeros are out.
min_val = 1e-6
## use paired observation or all observations
paired_obs = True
######## BEGIN CODE ###########################################################
## get the current working dir
cwd = os.getcwd()
## import the data into a data
#encoding='windows-1252'
df = pd.read_csv(os.path.join(cwd, data_file))
## convert date strings in "date" column to date time values
df['date'] = pd.to_datetime(df['date'])
df = df[df.event_dqi>=min_evt_dqi]
## get a list of unique projects
prjs = df[proj_col].unique()
prjs.sort()
stat_cols = ['prj','cstaid', 'xstaid', 'param', 'ctrl_bl',
'ctrl_xt', 'xmnt_bl', 'xmnt_xt']
## make a dataframe to hold the results in
stat_df = pd.DataFrame(columns=stat_cols)
## loop over all projects
for prj in prjs:
print(prj)
## determine if there's a control station
ctrl_staids = df[(df[proj_col]==prj) & (df[site_ind_col]==0)]\
['project_mon_stat_id']
if ctrl_staids.shape[0] > 0:
## get control staid for this project
ctrl_staid = df[(df[proj_col]==prj) & (df[site_ind_col]==0)]\
['project_mon_stat_id'].values[0]
## if no control staid set to ''
else:
ctrl_staid = ''
## get all treatment staids for this project
xmnt_staids = df[(df[proj_col]==prj) & (df[site_ind_col]>0)]\
['project_mon_stat_id'].unique()
## sort xmnt_staids
xmnt_staids.sort()
## loop over all treatment sites for this project and make a figure with
## subplots for each parameter
for xmnt_staid in xmnt_staids:
## loop over all parameters to plot
for par in par_cols:
## extract the date and parameter cols to dataframe for control
## site data
ctrl_data = df[(df[proj_col]==prj) &\
(df['project_mon_stat_id']==ctrl_staid) &\
(df[par]>=0)][['date', phas_ind_col, par]]
ctrl_data.sort_values('date')
## get xment site data
xmnt_data = df[(df[proj_col]==prj) &\
(df['project_mon_stat_id']==xmnt_staid) &\
(df[par]>=0)][['date', phas_ind_col, par]]
xmnt_data.sort_values('date')
if paired_obs == True:
## get list of paired event dates for treatment and control staid
## determine where
for d in xmnt_data['date']:
if ctrl_data[ctrl_data.date==d].shape[0]<1:
xmnt_data = xmnt_data.drop(xmnt_data[xmnt_data.date==d].index)
for d in ctrl_data['date']:
if xmnt_data[xmnt_data.date==d].shape[0]<1:
ctrl_data = ctrl_data.drop(ctrl_data[ctrl_data.date==d].index)
ctrl_pts_bl = np.log10(ctrl_data[(ctrl_data[phas_ind_col]==0) &\
(ctrl_data[par]>=min_val)][par].values)
ctrl_pts_xt = np.log10(ctrl_data[(ctrl_data[phas_ind_col]==1) &\
(ctrl_data[par]>=min_val)][par].values)
xmnt_pts_bl = np.log10(xmnt_data[(xmnt_data[phas_ind_col]==0) &\
(xmnt_data[par]>=min_val)][par].values)
xmnt_pts_xt = np.log10(xmnt_data[(xmnt_data[phas_ind_col]==1) &\
(xmnt_data[par]>=min_val)][par].values)
## run shapiro test
if ctrl_pts_bl.shape[0] > 2:
cbl_p = sp.stats.shapiro(ctrl_pts_bl)[1]
else:
cbl_p = 0.0
if ctrl_pts_xt.shape[0] > 2:
cxt_p = sp.stats.shapiro(ctrl_pts_xt)[1]
else:
cxt_p = 0.0
if xmnt_pts_bl.shape[0] > 2:
xbl_p = sp.stats.shapiro(xmnt_pts_bl)[1]
else:
xbl_p = 0.0
if xmnt_pts_xt.shape[0] > 2:
xxt_p = sp.stats.shapiro(xmnt_pts_xt)[1]
else:
xxt_p = 0.0
stat_df = stat_df.append(pd.DataFrame([[prj, ctrl_staid, xmnt_staid,
par, cbl_p, cxt_p, xbl_p,
xxt_p]], columns=stat_cols))