-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
89 lines (79 loc) · 2.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import torch
import torch.nn.functional as F
from torch import nn
import torch.distributed as dist
import torch.multiprocessing as mp
import random
import numpy as np
def partially_load(model, ckpt):
pretrained_dict = torch.load(ckpt)
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
def move_to_device(maybe_tensor, device):
if torch.is_tensor(maybe_tensor):
return maybe_tensor.to(device)
elif isinstance(maybe_tensor, np.ndarray):
return torch.from_numpy(maybe_tensor).to(device).contiguous()
elif isinstance(maybe_tensor, dict):
return {
key: move_to_device(value, device)
for key, value in maybe_tensor.items()
}
elif isinstance(maybe_tensor, list):
return [move_to_device(x, device) for x in maybe_tensor]
elif isinstance(maybe_tensor, tuple):
return tuple([move_to_device(x, device) for x in maybe_tensor])
return maybe_tensor
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def average_gradients(model):
size = float(dist.get_world_size())
for param in model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size
class Statistics:
def __init__(self, key_value_dict=None, **kwargs):
self.statistics = {'steps':0}
if key_value_dict is not None:
for x in key_value_dict:
self.statistics[x] = key_value_dict[x]
for x in kwargs:
self.statistics[x] = kwargs[x]
def update(self, key_or_dict, value=None):
if value is None:
assert isinstance(key_or_dict, dict)
for key in key_or_dict:
if key not in self.statistics:
self.statistics[key] = 0.
self.statistics[key] += key_or_dict[key]
else:
assert isinstance(key_or_dict, str)
if key_or_dict not in self.statistics:
self.statistics[key_or_dict] = 0.
self.statistics[key_or_dict] += value
def __getitem__(self, attr):
return self.statistics[attr]
def step(self):
self.statistics['steps'] += 1
def data_proc(data, queue):
for x in data:
queue.put(x)
queue.put('EPOCHDONE')
def asynchronous_load(data_loader):
queue = mp.Queue(10)
data_generator = mp.Process(target=data_proc, args=(data_loader, queue))
data_generator.start()
done = False
while not done:
batch = queue.get()
if isinstance(batch, str):
done = True
else:
yield batch
data_generator.join()