-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdemo_2D3Dregist.m
170 lines (164 loc) · 5.95 KB
/
demo_2D3Dregist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
% 3D Path planning from a single fluorosocopic image for robot assisted
% fenestrated endovascular aortic repair:
% This demostrates how to recover a 3D skeleton for the robotic path from a
% 2D intra-operative segmented aneurysm shape and a 3D pre-operative
% skeleton.
% It will import a 2D jpg image of pre-operative fluoroscopy, a 2D
% segmentation label, and a 3D skeleton. It will display the time cost for
% registration of 2D/3D skeletons, the intra-operative (ground truth)
% skeleton, pre-operative skeleton and our prediction, as well as the
% evaluated distance errors in 2D and 3D.
%==========================================================================
% $ Copyright (c) 2019, Jian-Qing Zheng
% $ This code is under Apache License, Version 2.0, January 2004
% $ http://www.apache.org/licenses/LICENSE-2.0.
% For any academic publication using this code, please kindly cite:
% J. Q. Zheng, X. Y. Zhou, C. Riga and G. Z. Yang, "Towards 3D Path Planning
% from a Single 2D Fluoroscopic Image for Robot Assisted Fenestrated
% Endovascular Aortic Repair", IEEE International Conference on
% Robotics and Automation (ICRA), 2019.
%==========================================================================
% Version: Matlab R2016a to R2017a
% Platform: Windows, Linux
%% clear
clear
close all
%% image parameter setting
img_size=512;
shiftlen=0;
voxel_resolution=0.452607;
R0=[0,0,-1;1,0,0;0,-1,0];
T0=[0;0;0.9];
R_rigid=R0;
T_rigid=T0;
hsize = [5,5];
sigma = 2.5;
%% option
showvolume=0; %1 spend a lot of time
volume_numb=23;
picture_numb=26;
%% centerline / skeleton
%== 2D
a = imread(['f',array2str(picture_numb,'_'),'.JPG']);
Img_Original=imresize(a(:,:,2),[img_size,img_size],'nearest');
h = fspecial('gaussian', hsize, sigma);
testvol = imfilter(not(Img_Original), h, 'replicate');
skel2D = Skeleton3D(testvol);
[x,y]=find(skel2D);
points2D=[x,y]';
%== 3D
m=load(['Skeleton3D_P',array2str(volume_numb,'_')]);
skel = struct2array(m);
skel3D=skel;
[X,Y,Z]=ind2sub(size(skel3D),find(skel3D==1));
points3D=[X,Y,Z]';
%% Ground Truth
m=load(['Skeleton3D_P',array2str(picture_numb,'_')]);
skel_gt= struct2array(m);
[X,Y,Z]=ind2sub(size(skel_gt),find(skel_gt==1));
[~,P_gt]=project3D22D([X,Y,Z]',R0,T0,img_size);
p_gt=unique(points2D','rows')';
%% rigid transformation
[points3D_proj,points3D_rigid]=project3D22D(points3D,R_rigid,T_rigid,img_size);
%% Proposed method
[uopt,idx_del,idx_inline_3D,M2,T2]=regist2D3D(points2D,points3D,R_rigid,T_rigid);
points3D_rigid2=points3D_rigid(:,~idx_del);
%% plot skeleton
R=eye(3);
T=[0;0;0];
[Pp2,P3D2]=(project3D22D(points3D_rigid2+uopt,R,T,img_size));
Pp2_tmp=round(Pp2);
Pp2_tmp(:,any(Pp2<1))=[];
Pp2_tmp(:,any(Pp2>img_size))=[];
skel3Dp2=zeros(size(2*skel,1),size(2*skel,2));%
skel3Dp2(Pp2_tmp(1,:)+(Pp2_tmp(2,:)-1).*(size(skel3Dp2,1)))=1;
% subplot(1,3,2);
% imshow(skel3DP,[]);
% [Pr,P3R]=(project3D22D(points3D_rigid,R,T,img_size));
Pr=round(points3D_proj);
Pr(:,any(Pr<1))=[];
Pr(:,any(Pr>img_size))=[];
skel3DPw=zeros(size(2*skel,1),size(2*skel,2));%
skel3DPw(Pr(1,:)+(Pr(2,:)-1).*(size(skel3DPw,1)))=1;
% subplot(1,3,3);
% imshow(skel3DPw,[]);
img2D2=cat(3,skel3Dp2,skel3DPw,skel2D);
a= imread(['IMG',array2str(picture_numb,'_'),'.JPG']);
a=wshift('2D',a(:,:),[-shiftlen,0]);
if shiftlen>0
a(1:shiftlen,:)=0;
else
a(end-shiftlen+1:end,:)=0;
end
IMG2D=double(imresize(a,[img_size,img_size],'bilinear'));
IMG2D=IMG2D(:,:,[1,1,1])./max(max(max(IMG2D)));
img_tmp=IMG2D;
mask_tmp=any(img2D2,3);
img_tmp(mask_tmp(:,:,[1,1,1]))=0;
img2D2=img2D2+img_tmp;
figure
imshow(img2D2,[]);
%% 3D skeleton
% 2
figure();
% load shape
if showvolume
% load
m=load(['Label_save_P',array2str(picture_numb,'_')]);
a = struct2array(m);
testvol=permute(a,[3,1,2]);
testvol(end:-1:1,:,end:-1:1)=testvol;
testvol(:,:,1:end-51)=testvol(:,:,52:end);
% volume2mesh
col=[.7 .7 .8];
hiso = patch(isosurface(testvol,0),'FaceColor',col,'EdgeColor','none');
hiso2 = patch(isocaps(testvol,0),'FaceColor',col,'EdgeColor','none');
axis equal;axis off;
lighting phong;
isonormals(testvol,hiso);
end
alpha(0.5);
set(gca,'DataAspectRatio',[1 1 1])
camlight;
hold on;
w=size(skel,1);
l=size(skel,2);
h=size(skel,3);
x=P_gt(1,:)';
y=P_gt(2,:)';
z=P_gt(3,:)'-img_size;
plot3(y,x,z,'square','Markersize',4,'MarkerFaceColor','b','Color','b');
x=points3D_rigid2(1,:)';
y=points3D_rigid2(2,:)';
z=points3D_rigid2(3,:)'-img_size;
plot3(y,x,z,'square','Markersize',4,'MarkerFaceColor','g','Color','g');
x=P3D2(1,:)';
y=P3D2(2,:)';
z=P3D2(3,:)'-img_size;
plot3(y,x,z,'square','Markersize',4,'MarkerFaceColor','r','Color','r');
set(gcf,'Color','white');
view(140,80)
imshow(img2D2,[]);
%% Error
%-- 3D
[~,dist3D_vec0]=distance2curve(P_gt',(points3D_rigid)','sp');
dist3D_error_avr0=mean(dist3D_vec0).*voxel_resolution;
dist3D_error_std0=std(dist3D_vec0).*voxel_resolution;
%-- 2D
[~,dist2D_vec0]=distance2curve(p_gt',(points3D_proj)','sp');
dist2D_error_avr0=mean(dist2D_vec0).*voxel_resolution;
dist2D_error_std0=std(dist2D_vec0).*voxel_resolution;
disp('input shape difference:')
disp(['3D distance (avg/std): ',num2str(dist3D_error_avr0),'mm / ',num2str(dist3D_error_std0),'mm'])
disp(['2D distance (avg/std): ',num2str(dist2D_error_avr0),'pix / ',num2str(dist2D_error_std0),'pix'])
%-- 3D
[~,dist3D_vec2]=distance2curve(P_gt',(P3D2(:,idx_inline_3D(~(idx_del))))','sp');
dist3D_error_avr2=mean(dist3D_vec2).*voxel_resolution;
dist3D_error_std2=std(dist3D_vec2).*voxel_resolution;
%-- 2D
[~,dist2D_vec2]=distance2curve(p_gt',(Pp2(:,idx_inline_3D(~(idx_del))))','sp');
dist2D_error_avr2=mean(dist2D_vec2).*voxel_resolution;
dist2D_error_std2=std(dist2D_vec2).*voxel_resolution;
disp('error for the proposed method:')
disp(['3D distance (avg/std): ',num2str(dist3D_error_avr2),'mm / ',num2str(dist3D_error_std2),'mm'])
disp(['2D distance (avg/std): ',num2str(dist2D_error_avr2),'pix / ',num2str(dist2D_error_std2),'pix'])