forked from chrisconlan/algorithmic-trading-with-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
265 lines (205 loc) · 8.58 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import pandas as pd
from pypm.data_io import load_eod_data, load_spy_data
from sklearn.linear_model import LinearRegression
from typing import Dict, Any, Callable
def calculate_return_series(series: pd.Series) -> pd.Series:
"""
Calculates the return series of a given time series.
>>> data = load_eod_data('VBB')
>>> close_series = data['close']
>>> return_series = return_series(close_series)
The first value will always be NaN.
"""
shifted_series = series.shift(1, axis=0)
return series / shifted_series - 1
def calculate_log_return_series(series: pd.Series) -> pd.Series:
"""
Same as calculate_return_series but with log returns
"""
shifted_series = series.shift(1, axis=0)
return pd.Series(np.log(series / shifted_series))
def calculate_percent_return(series: pd.Series) -> float:
"""
Takes the first and last value in a series to determine the percent return,
assuming the series is in date-ascending order
"""
return series.iloc[-1] / series.iloc[0] - 1
def get_years_past(series: pd.Series) -> float:
"""
Calculate the years past according to the index of the series for use with
functions that require annualization
"""
start_date = series.index[0]
end_date = series.index[-1]
return (end_date - start_date).days / 365.25
def calculate_cagr(series: pd.Series) -> float:
"""
Calculate compounded annual growth rate
"""
start_price = series.iloc[0]
end_price = series.iloc[-1]
value_factor = end_price / start_price
year_past = get_years_past(series)
return (value_factor ** (1 / year_past)) - 1
def calculate_annualized_volatility(return_series: pd.Series) -> float:
"""
Calculates annualized volatility for a date-indexed return series.
Works for any interval of date-indexed prices and returns.
"""
years_past = get_years_past(return_series)
entries_per_year = return_series.shape[0] / years_past
return return_series.std() * np.sqrt(entries_per_year)
def calculate_sharpe_ratio(price_series: pd.Series,
benchmark_rate: float=0) -> float:
"""
Calculates the Sharpe ratio given a price series. Defaults to benchmark_rate
of zero.
"""
cagr = calculate_cagr(price_series)
return_series = calculate_return_series(price_series)
volatility = calculate_annualized_volatility(return_series)
return (cagr - benchmark_rate) / volatility
def calculate_rolling_sharpe_ratio(price_series: pd.Series,
n: float=20) -> pd.Series:
"""
Compute an approximation of the Sharpe ratio on a rolling basis.
Intended for use as a preference value.
"""
rolling_return_series = calculate_return_series(price_series).rolling(n)
return rolling_return_series.mean() / rolling_return_series.std()
def calculate_annualized_downside_deviation(return_series: pd.Series,
benchmark_rate: float=0) -> float:
"""
Calculates the downside deviation for use in the Sortino ratio.
Benchmark rate is assumed to be annualized. It will be adjusted according
to the number of periods per year seen in the data.
"""
# For both de-annualizing the benchmark rate and annualizing result
years_past = get_years_past(return_series)
entries_per_year = return_series.shape[0] / years_past
adjusted_benchmark_rate = ((1+benchmark_rate) ** (1/entries_per_year)) - 1
downside_series = adjusted_benchmark_rate - return_series
downside_sum_of_squares = (downside_series[downside_series > 0] ** 2).sum()
denominator = return_series.shape[0] - 1
downside_deviation = np.sqrt(downside_sum_of_squares / denominator)
return downside_deviation * np.sqrt(entries_per_year)
def calculate_sortino_ratio(price_series: pd.Series,
benchmark_rate: float=0) -> float:
"""
Calculates the Sortino ratio.
"""
cagr = calculate_cagr(price_series)
return_series = calculate_return_series(price_series)
downside_deviation = calculate_annualized_downside_deviation(return_series)
return (cagr - benchmark_rate) / downside_deviation
def calculate_pure_profit_score(price_series: pd.Series) -> float:
"""
Calculates the pure profit score
"""
cagr = calculate_cagr(price_series)
# Build a single column for a predictor, t
t: np.ndarray = np.arange(0, price_series.shape[0]).reshape(-1, 1)
# Fit the regression
regression = LinearRegression().fit(t, price_series)
# Get the r-squared value
r_squared = regression.score(t, price_series)
return cagr * r_squared
def calculate_jensens_alpha(return_series: pd.Series,
benchmark_return_series: pd.Series) -> float:
"""
Calculates Jensen's alpha. Prefers input series have the same index. Handles
NAs.
"""
# Join series along date index and purge NAs
df = pd.concat([return_series, benchmark_return_series], sort=True, axis=1)
df = df.dropna()
# Get the appropriate data structure for scikit learn
clean_returns: pd.Series = df[df.columns.values[0]]
clean_benchmarks = pd.DataFrame(df[df.columns.values[1]])
# Fit a linear regression and return the alpha
regression = LinearRegression().fit(clean_benchmarks, y=clean_returns)
return regression.intercept_
def calculate_jensens_alpha_v2(return_series: pd.Series) -> float:
"""
Calculates Jensen's alpha, but loads in SPY prices as the benchmark series
for you. Can be slow if run repeatedly.
"""
spy_data = load_spy_data()
benchmark_return_series = calculate_log_return_series(spy_data['close'])
return calculate_jensens_alpha(return_series, benchmark_return_series)
DRAWDOWN_EVALUATORS: Dict[str, Callable] = {
'dollar': lambda price, peak: peak - price,
'percent': lambda price, peak: -((price / peak) - 1),
'log': lambda price, peak: np.log(peak) - np.log(price),
}
def calculate_drawdown_series(series: pd.Series, method: str='log') -> pd.Series:
"""
Returns the drawdown series
"""
assert method in DRAWDOWN_EVALUATORS, \
f'Method "{method}" must by one of {list(DRAWDOWN_EVALUATORS.keys())}'
evaluator = DRAWDOWN_EVALUATORS[method]
return evaluator(series, series.cummax())
def calculate_max_drawdown(series: pd.Series, method: str='log') -> float:
"""
Simply returns the max drawdown as a float
"""
return calculate_drawdown_series(series, method).max()
def calculate_max_drawdown_with_metadata(series: pd.Series,
method: str='log') -> Dict[str, Any]:
"""
Calculates max_drawndown and stores metadata about when and where. Returns
a dictionary of the form
{
'max_drawdown': float,
'peak_date': pd.Timestamp,
'peak_price': float,
'trough_date': pd.Timestamp,
'trough_price': float,
}
"""
assert method in DRAWDOWN_EVALUATORS, \
f'Method "{method}" must by one of {list(DRAWDOWN_EVALUATORS.keys())}'
evaluator = DRAWDOWN_EVALUATORS[method]
max_drawdown = 0
local_peak_date = peak_date = trough_date = series.index[0]
local_peak_price = peak_price = trough_price = series.iloc[0]
for date, price in series.iteritems():
# Keep track of the rolling max
if price > local_peak_price:
local_peak_date = date
local_peak_price = price
# Compute the drawdown
drawdown = evaluator(price, local_peak_price)
# Store new max drawdown values
if drawdown > max_drawdown:
max_drawdown = drawdown
peak_date = local_peak_date
peak_price = local_peak_price
trough_date = date
trough_price = price
return {
'max_drawdown': max_drawdown,
'peak_date': peak_date,
'peak_price': peak_price,
'trough_date': trough_date,
'trough_price': trough_price
}
def calculate_log_max_drawdown_ratio(series: pd.Series) -> float:
log_drawdown = calculate_max_drawdown(series, method='log')
log_return = np.log(series.iloc[-1]) - np.log(series.iloc[0])
return log_return - log_drawdown
def calculate_calmar_ratio(series: pd.Series, years_past: int=3) -> float:
"""
Return the percent max drawdown ratio over the past three years, otherwise
known as the Calmar Ratio
"""
# Filter series on past three years
last_date = series.index[-1]
three_years_ago = last_date - pd.Timedelta(days=years_past*365.25)
series = series[series.index > three_years_ago]
# Compute annualized percent max drawdown ratio
percent_drawdown = calculate_max_drawdown(series, method='percent')
cagr = calculate_cagr(series)
return cagr / percent_drawdown