-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathexample.py
117 lines (92 loc) · 4.9 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from nimblenet.activation_functions import sigmoid_function
from nimblenet.cost_functions import cross_entropy_cost
from nimblenet.learning_algorithms import *
from nimblenet.neuralnet import NeuralNet
from nimblenet.preprocessing import construct_preprocessor, standarize
from nimblenet.data_structures import Instance
from nimblenet.tools import print_test
# Training set
dataset = [ Instance( [0,0], [0] ), Instance( [1,0], [1] ), Instance( [0,1], [1] ), Instance( [1,1], [1] ) ]
preprocess = construct_preprocessor( dataset, [standarize] )
training_data = preprocess( dataset )
test_data = preprocess( dataset )
cost_function = cross_entropy_cost
settings = {
# Required settings
"n_inputs" : 2, # Number of network input signals
"layers" : [ (3, sigmoid_function), (1, sigmoid_function) ],
# [ (number_of_neurons, activation_function) ]
# The last pair in the list dictate the number of output signals
# Optional settings
"initial_bias_value" : 0.0,
"weights_low" : -0.1, # Lower bound on the initial weight value
"weights_high" : 0.1, # Upper bound on the initial weight value
}
# initialize the neural network
network = NeuralNet( settings )
network.check_gradient( training_data, cost_function )
## load a stored network configuration
# network = NeuralNet.load_network_from_file( "network0.pkl" )
# Train the network using backpropagation
RMSprop(
network, # the network to train
training_data, # specify the training set
test_data, # specify the test set
cost_function, # specify the cost function to calculate error
ERROR_LIMIT = 1e-2, # define an acceptable error limit
#max_iterations = 100, # continues until the error limit is reach if this argument is skipped
batch_size = 0, # 1 := no batch learning, 0 := entire trainingset as a batch, anything else := batch size
print_rate = 1000, # print error status every `print_rate` epoch.
learning_rate = 0.3, # learning rate
momentum_factor = 0.9, # momentum
input_layer_dropout = 0.0, # dropout fraction of the input layer
hidden_layer_dropout = 0.0, # dropout fraction in all hidden layers
save_trained_network = False # Whether to write the trained weights to disk
)
## Train the network using SciPy
#scipyoptimize(
# network,
# training_data, # specify the training set
# test_data, # specify the test set
# cost_function, # specify the cost function to calculate error
# method = "L-BFGS-B",
# save_trained_network = False # Whether to write the trained weights to disk
# )
## Train the network using Scaled Conjugate Gradient
#scaled_conjugate_gradient(
# network,
# training_data, # specify the training set
# test_data, # specify the test set
# cost_function, # specify the cost function to calculate error
#
# # optional parameters
# print_rate = 1000, # print error status every `print_rate` epoch.
# ERROR_LIMIT = 1e-4, # define an acceptable error limit
# save_trained_network = False # Whether to write the trained weights to disk
# )
## Train the network using resilient backpropagation
#resilient_backpropagation(
# network,
# training_data, # specify the training set
# test_data, # specify the test set
# cost_function, # specify the cost function to calculate error
# ERROR_LIMIT = 1e-3, # define an acceptable error limit
# #max_iterations = (), # continues until the error limit is reach if this argument is skipped
#
# # optional parameters
# print_rate = 1000, # print error status every `print_rate` epoch.
# weight_step_max = 50.,
# weight_step_min = 0.,
# start_step = 0.5,
# learn_max = 1.2,
# learn_min = 0.5,
# save_trained_network = False # Whether to write the trained weights to disk
# )
# Print a network test
print_test( network, training_data, cost_function )
"""
Prediction Example
"""
prediction_set = [ Instance([0,1]), Instance([1,0]) ]
prediction_set = preprocess( prediction_set )
print network.predict( prediction_set ) # produce the output signal