-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy path08_web_scraping.py
311 lines (249 loc) · 10.3 KB
/
08_web_scraping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
'''
CLASS: Web Scraping
We will be using two packages in particular: requests and Beautiful Soup 4.
'''
'''
Introduction to Beautiful Soup
'''
# imports
import requests # How Python gets the webpages
from bs4 import BeautifulSoup # Creates structured, searchable object
import pandas as pd
import matplotlib.pyplot as plt
# First, let's play with beautiful soup on a "toy" webpage
html_doc = """
<!doctype html>
<html lang="en">
<head>
<title>Brandon's Homepage!</title>
</head>
<body>
<h1>Brandon's Homepage</h1>
<p id="intro">My name is Brandon. I'm love web scraping!</p>
<p id="background">I'm originally from Louisiana. I went to undergrad at Louisiana Tech and grad school at UNC.</p>
<p id="current">I currently work as a Product Manager of Linguistics and Analytics at Clarabridge.</p>
<h3>My Hobbies</h3>
<ul>
<li id="my favorite">Data Science</li>
<li>Backcountry Camping</li>
<li>Rock Climbing</li>
<li>Cycling</li>
<li>The Internet</li>
</ul>
</body>
</html>
"""
type(html_doc)
# Beautiful soup allows us to create a structured object out of this string
b = BeautifulSoup(html_doc)
type(b)
# Let's look at "b"
b
# The most useful methods in a Beautiful Soup object are "find" and "findAll".
# "find" takes several parameters, the most important are "name" and "attrs".
# Let's talk about "name".
b.find(name='body') # Finds the 'body' tag and everything inside of it.
body = b.find(name='body')
type(body) #tag
# You can search tags also
h1 = body.find(name='h1') # Find the 'h1' tag inside of the 'body' tag
h1
h1.text # Print out just the text inside of the body
# Now let's find the 'p' tags
p = b.find(name='p')
# This only finds one. This is where 'findAll' comes in.
all_p = b.findAll(name='p')
all_p
type(all_p) # Result sets are a lot like Python lists
all_p[0] # Access specific element with index
all_p[1]
# Iterable like list
for one_p in all_p:
print one_p.text # Print text
# Access specific attribute of a tag
all_p[0] # Specific tag
all_p[0]['id'] # Speific attribute of a specific tag
# Now let's talk about 'attrs'
# Beautiful soup also allows us to choose tags with specific attributes
b.find(name='p', attrs={"id":"intro"})
b.find(name='p', attrs={"id":"background"})
b.find(name='p', attrs={"id":"current"})
##########################################
############ Exercise 1 ############
##########################################
# 1. Extact the 'h3' element from Brandon's webpage.
b.find(name='h3')
# 2. Extract Brandon's hobbies from the html_doc. Print out the text of the hobby.
hobbies = b.findAll(name='ul')
for hobby in hobbies:
print hobby.text
# 3. Extract Brandon's hobby that has the id "my favorite".
b.find(name='li', attrs={'id':'my favorite'})
'''
Beautiful Soup from the web
'''
# We see data on a web page that we want to get. First we need the HTML.
# This downloads the HTML and puts it into the variable r
r = requests.get('http://www.imdb.com/title/tt1856010/')
# But when we look at it, it's just one giant string.
type(r.text) # Unicode string
r.text[0:200]
# Beautiful soup allows us to create a structured object out of this string
b = BeautifulSoup(r.text)
type(b)
'''
"find" and "findAll" with the 'name' parameter in Beautiful Soup
'''
b.find(name='body') # Find a specific HTML tag
body = b.find(name='body') # Store the output of your "find"
type(body) # Let's look at the type
# Can we still run another "find" command on the output?
img = body.find('img') # Find the image tags
img
type(img)
# Yes, but it only finds one of the "img" tags. We want them all.
imgs = body.findAll(name='img')
imgs # Now we get them all.
type(imgs) # Resultsets are a lot like Python lists
# Let's look at each individual image
imgs[0]
imgs[1]
# We're really interested is the 'src' attribute, the actual image location.
# How do we access attributes in a Python object? Using the dot notation or the
# brackets. With Beautiful Soup, we must use the brackets
imgs[0]['src']
# Now we can look through each image and print the 'src' attribute.
for img in imgs:
print img['src']
# Or maybe we want to create a list of all of the 'src' attributes
src_list = []
for img in imgs:
src_list.append(img['src'])
len(src_list)
'''
"find" and "findAll" with the 'attrs' parameter in Beautiful Soup
'''
# Now let's talk about 'attrs'
# Beautiful soup also allows us to choose tags with specific attributes
title = b.find(name="span", attrs={"class":"itemprop", "itemprop":"name"})
title # Prints HTML matching that tag, but we want the actual name
title.text # The "text" attribute gives you the text between two HTML tags
star_rating = b.find(name="div", attrs={"class":"titlePageSprite star-box-giga-star"})
# How do I get the actual star_rating number?
star_rating.text
# How do I make this star_rating a number instead of a string?
float(star_rating.text)
##########################################
############ Exercise 2 ############
##########################################
'''
We've retrieved the title of the show, but now we want the show's rating,
duration, and genre. Using "find" and "find all", write code that retrieves
each of these things
Hint: Everything can be found in the "infobar". Try finding that first and
searchng within it.
'''
infobar = b.find(name="div", attrs={"class":"infobar"})
# Retrieve the show's content rating
content_rating = infobar.find(name='meta', attrs={"itemprop":"contentRating"})['content']
# Retrieve the show's duration
duration = infobar.find(name='time', attrs={"itemprop":"duration"}).text
# Retrieve the show's genre
genre = infobar.find(name='span', attrs={"itemprop":"genre"}).text
'''
Looping through 'findAll' results
'''
# Now we want to get the list of actors and actresses
# First let's get the "div" block with all of the actor info
actors_raw = b.find(name='div', attrs={"class":"txt-block", "itemprop":"actors", "itemscope":"", "itemtype":"http://schema.org/Person"})
# Now let's find all of the occurences of the "span" with "itemprop" "name",
# meaning the tags with actors' and actresses' names.
actors = actors_raw.findAll(name="span", attrs={"itemprop":"name"})
# Now we want to loop through each one and get the text inside the tags
actors_list = [actor.text for actor in actors]
'''
Creating a "Web Scraping" Function
The above code we've written is useful, but we don't want to have to type it
everytime. We want to create a function that takes the URL and outputs the pieces
we want everytime.
'''
def getIMDBInfo(url):
r = requests.get(url) # Get HTML
b = BeautifulSoup(r.text) # Create Beautiful Soup object
# Get various attributes and put them in dictionary
results = {} # Initialize empty dictionary
# Get the title
results['title'] = b.find(name="span", attrs={"class":"itemprop", "itemprop":"name"}).text
# Rating
results['star_rating'] = float(b.find(name="div", attrs={"class":"titlePageSprite"}).text)
# Actors/actresses
actors_raw = b.find(name='div', attrs={"class":"txt-block", "itemprop":"actors", "itemscope":"", "itemtype":"http://schema.org/Person"})
actors = actors_raw.findAll(name="span", attrs={"class":"itemprop", "itemprop":"name"})
results['actors_list'] = [actor.text for actor in actors]
# Content Rating
infobar = b.find(name="div", attrs={"class":"infobar"})
results['content_rating'] = infobar.find(name='meta', attrs={"itemprop":"contentRating"})['content']
# Show duration
results['duration'] = int(infobar.find(name='time', attrs={"itemprop":"duration"}).text.strip()[:-4])#infobar.find(name='time', attrs={"itemprop":"duration"}).text
# Genre
results['genre'] = infobar.find(name='span', attrs={"itemprop":"genre"}).text
# Return dictionary
return results
# Let's see if it worked
# We can look at the results of our previous web page, "House of Cards"
getIMDBInfo('http://www.imdb.com/title/tt1856010/')
# Now let's try another one: Interstellar
getIMDBInfo('http://www.imdb.com/title/tt0816692/')
# Now let's show the true functionality
list_of_title_urls = []
with open('imdb_movie_urls.csv', 'rU') as f:
list_of_title_urls = f.read().split('\n')
# Let's get the data for each title in the list
data = []
for title_url in list_of_title_urls:
imdb_data = getIMDBInfo(title_url)
data.append(imdb_data)
column_names = ['star_rating', 'title', 'content_rating', 'genre', 'duration', 'actors_list']
movieRatings = pd.DataFrame(data, columns = column_names)
movieRatings
# Now we have some data we can begin exploring, aggregating, etc.
'''
Bonus material: Getting movie data for the top 1000 movies on IMDB
'''
# Or let's build another webscraper to get the IMDB top 1000
movie_links = [] # Create empty list
# Notice that we are creating a list [1,101,201,...] and changing the URL slightly each time.
for i in range(1,1000,100):
# Get url
r = requests.get('http://www.imdb.com/search/title?groups=top_1000&sort=user_rating&start=' + str(i) + '&view=simple') # Get HTML
b = BeautifulSoup(r.text) # Create Beautiful Soup object
links = b.findAll(name='td', attrs={'class':'title'}) # Find all 'td's with 'class'='title'
for link in links:
a_link = link.find('a') # Find liks
movie_links.append('http://www.imdb.com' + str(a_link['href'])) # Add link to list
# Create dataframe of the top 1000 movies on IMDB
# NOTE: This could take 5-10 minutes. You can skip this part as I've already
# pulled all of this data and saved it to a file.
data = []
j=0
# Loop through every movie title
for movie_link in movie_links:
try:
imdb_data = getIMDBInfo(movie_link) # Get movie data
data.append(imdb_data) # Put movie data in list
except:
pass
j += 1
if j%50 == 0:
print 'Completed ' + str(j) + ' titles!' # Print progress
# Create data frame with movies
column_names = ['star_rating', 'title', 'content_rating', 'genre', 'duration', 'actors_list']
movieRatingsTop1000 = pd.DataFrame(data, columns = column_names)
# Read in the reated dataframe
movieRatingsTop1000 = pd.read_csv('imdb_movie_ratings_top_1000.csv')
# Now you're ready to do some analysis
movieRatingsTop1000.describe()
movieRatingsTop1000.groupby('genre').star_rating.mean()
movieRatingsTop1000.groupby('content_rating').star_rating.mean()
movieRatingsTop1000.plot(kind='scatter', x='duration', y='star_rating')
plt.show()