-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy patheval_ppl.py
254 lines (226 loc) · 8.83 KB
/
eval_ppl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import datasets
import gc
import sys
import torch
import warnings
from transformers import AutoTokenizer
from transformers import LlamaForCausalLM
from datasets import load_dataset
from tqdm import tqdm
from accelerate import Accelerator
from flash_attn.losses.cross_entropy import CrossEntropyLoss
from easy_context import (
prepare_seq_parallel_inputs,
apply_seq_parallel_monkey_patch,
)
apply_seq_parallel_monkey_patch("zigzag_ring_attn", "llama")
def compute_perplexity(
encodings,
model,
tokenizer,
add_start_token: bool = True,
accelerator=None,
max_length=None,
sliding_window=256,
truncate=False,
aggressive_memory=False,
hide_progress=False,
):
device = accelerator.device
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
max_tokenized_len = max_length - 1
else:
max_tokenized_len = max_length
encoded_texts = encodings["input_ids"]
attn_masks = encodings["attention_mask"]
if max_length and truncate:
encoded_texts = [x[0:max_tokenized_len] for x in encoded_texts]
attn_masks = [x[0:max_tokenized_len] for x in attn_masks]
sliding_window = max_tokenized_len
loss_func = CrossEntropyLoss()
pbar = tqdm(total=len(encoded_texts), disable=not accelerator.is_local_main_process)
nlls = []
for encoding_index in range(0, len(encoded_texts)):
labels = torch.tensor(encoded_texts[encoding_index : encoding_index + 1])
seq_len = labels.size(1)
prev_end_loc = 0
for begin_loc in range(0, seq_len, sliding_window):
end_loc = min(begin_loc + max_tokenized_len, seq_len)
trg_len = end_loc - prev_end_loc
input_ids = labels[:, begin_loc:end_loc]
if add_start_token:
bos_tokens_tensor = torch.tensor(
[[tokenizer.bos_token_id]] * input_ids.size(dim=0)
)
input_ids = torch.cat([bos_tokens_tensor, input_ids], dim=1)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
# move target to the left by one (remember to add one new -100)
target_ids = target_ids.roll(-1, dims=1)
target_ids[:, -1] = -100
position_ids = (
torch.arange(target_ids.shape[1])
.unsqueeze(0)
.expand(input_ids.shape[0], -1)
)
prepared = prepare_seq_parallel_inputs(
"zigzag_ring_attn",
input_ids,
position_ids,
target_ids,
accelerator.process_index,
accelerator.num_processes,
accelerator.device,
)
local_input_ids = prepared["local_input_ids"]
local_position_ids = prepared["local_position_ids"]
local_target_ids = prepared["local_target_ids"]
with torch.inference_mode():
outputs = model(
local_input_ids,
position_ids=local_position_ids
).logits
neg_log_likelihood = loss_func(
outputs.view(-1, outputs.shape[-1]), local_target_ids.view(-1)
)
neg_log_likelihood = accelerator.reduce(
neg_log_likelihood, reduction="mean"
)
if aggressive_memory:
outputs = None
input_ids = None
target_ids = None
gc.collect()
torch.cuda.empty_cache()
nlls.append(neg_log_likelihood)
ppl = float(torch.exp(torch.stack(nlls).mean()).float().cpu())
pbar.set_postfix(ppl=ppl)
prev_end_loc = end_loc
if end_loc == seq_len:
break
pbar.update(1)
ppl = float(torch.exp(torch.stack(nlls).mean()).float().cpu())
return {"mean_perplexity": ppl}
def main(args):
models = [x[0] for x in args.model]
tokenizer = AutoTokenizer.from_pretrained(
models[0],
model_max_length=sys.maxsize,
trust_remote_code=True,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
if args.tokenized:
try:
input_texts = datasets.load_from_disk(args.tokenized)
except:
input_texts = datasets.load_dataset(
args.tokenized, name=args.subset, split=args.split
)
else:
input_texts = datasets.load_dataset(
args.dataset, name=args.subset, split=args.split
)
def tokenize(example):
tokenized = tokenizer(
example[args.feature],
add_special_tokens=False,
padding=True,
truncation=False,
max_length=sys.maxsize,
return_attention_mask=True,
)
example["input_ids"] = tokenized["input_ids"]
example["attention_mask"] = tokenized["attention_mask"]
example["tokenized_len"] = len(tokenized["input_ids"])
return example
input_texts = input_texts.map(tokenize)
if args.save_tokenized:
input_texts.save_to_disk(args.save_tokenized)
print(f"Saved tokenized dataset to {args.save_tokenized}")
return
if args.dataset_min_tokens:
input_texts = input_texts.filter(
lambda x: x["tokenized_len"] >= args.dataset_min_tokens,
keep_in_memory=True,
num_proc=64,
)
print("Dataset size after fildering:", len(input_texts))
if args.samples:
input_texts = input_texts[: args.samples]
if args.tokens_step:
tokens = [
x for x in range(args.min_tokens, args.max_tokens + 1, args.tokens_step)
]
else:
tokens = [args.min_tokens]
while args.min_tokens < args.max_tokens:
point = tokens[-1] * 2
if point <= args.max_tokens:
tokens.append(point)
else:
break
results = []
accelerator = Accelerator(
mixed_precision="bf16",
)
for model in tqdm(models, desc="Model", leave=False, disable=args.hide_progress):
torch.cuda.empty_cache()
loaded = LlamaForCausalLM.from_pretrained(
model,
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2",
device_map=accelerator.device,
)
loaded = accelerator.prepare(loaded)
loaded.gradient_checkpointing_enable()
result = []
for max_length in tokens:
ppl = compute_perplexity(
model=loaded,
tokenizer=tokenizer,
accelerator=accelerator,
encodings=input_texts,
add_start_token=tokenizer.bos_token is not None,
max_length=max_length,
sliding_window=args.sliding_window,
truncate=args.truncate,
aggressive_memory=args.aggressive_memory,
hide_progress=args.hide_progress,
)["mean_perplexity"]
if accelerator.is_local_main_process:
print(f"{model}: {max_length}={ppl}")
result.append(ppl)
result.insert(0, model)
results.append(result)
if args.output_file and accelerator.is_local_main_process:
with open(args.output_file, "w", encoding="utf-8") as f:
f.write(f",{','.join([str(x) for x in tokens])}\n")
for result in results:
f.write(f"{','.join([str(x) for x in result])}\n")
if __name__ == "__main__":
warnings.simplefilter("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", action="append", nargs="+")
parser.add_argument("-d", "--dataset", type=str)
parser.add_argument("-s", "--subset", type=str)
parser.add_argument("-f", "--feature", type=str)
parser.add_argument("--max-tokens", type=int, default=8192)
parser.add_argument("--min-tokens", type=int, default=256)
parser.add_argument("--dataset-min-tokens", type=int)
parser.add_argument("--tokens-step", type=int)
parser.add_argument("--sliding-window", type=int, default=256)
parser.add_argument("--truncate", action="store_true")
parser.add_argument("--split", type=str, default="test")
parser.add_argument("--samples", type=int)
parser.add_argument("--save-tokenized", type=str)
parser.add_argument("--tokenized", type=str)
parser.add_argument("--output-file", type=str)
parser.add_argument("--aggressive-memory", action="store_true")
parser.add_argument("--hide-progress", action="store_true")
main(parser.parse_args())