-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathintegeregex.py
102 lines (93 loc) · 5.22 KB
/
integeregex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2019 kamyu. All rights reserved.
#
# Google Code Jam 2016 World Finals - Problem A. Integeregex
# https://code.google.com/codejam/contest/7234486/dashboard#s=p0
#
# Time: O(R^2 + RlogB) on average, worst: O(R^2 + (2^R)logB)
# Space: O(R) on average, worst: O(2^R)
#
from collections import defaultdict
def make_state(state_count):
state_count[0] += 1
return "s{}".format(state_count[0]) # make state more readable
def make_Ei_NFA(R, start, state_count, transitions):
initial_state, final_state = make_state(state_count), make_state(state_count)
assert(state_count[0] <= 2*len(R))
if R[start[0]].isdigit():
start[0] += 1
transitions[initial_state][int(R[start[0]-1])] = set([final_state])
else:
assert(R[start[0]] == '(')
start[0] += 1
while R[start[0]-1] in "(|":
new_initial_state, new_final_state = make_NFA(R, start, state_count, transitions)
if start[0]+1 != len(R) and R[start[0]:start[0]+2] == ")*":
start[0] += 2 # repetition
transitions[initial_state][''] |= set([new_initial_state, final_state])
transitions[new_final_state][''] = set([new_initial_state, final_state])
break
assert(R[start[0]] in "|)")
start[0] += 1 # disjunction
transitions[initial_state][''] |= set([new_initial_state])
transitions[new_final_state][''] = set([final_state])
return initial_state, final_state
# Thompson's construction, reference: https://www.researchgate.net/profile/Shin-ichi_Minato/publication/221580042/figure/fig1/AS:341447451660288@1458418824089/The-construction-of-Thompson-automata-TNFAs.png
def make_NFA(R, start, state_count, transitions): # Time: O(R), Space: O(R)
initial_state, final_state = None, None
while start[0] != len(R) and (R[start[0]] == '(' or R[start[0]].isdigit()):
new_initial_state, new_final_state = make_Ei_NFA(R, start, state_count, transitions) # concatenation
if initial_state is None:
initial_state = new_initial_state
if final_state is not None:
transitions[final_state][''] = set([new_initial_state])
final_state = new_final_state
return initial_state, final_state
def make_epsilon_reached_NFA(transitions, final_state): # Time: O(R^2), Space: O(R)
def dfs(transitions, curr_state, lookup, epsilon_reached_states):
for state in transitions[curr_state]['']:
if state in lookup:
continue
lookup.add(state)
dfs(transitions, state, lookup, epsilon_reached_states)
epsilon_reached_states.add(curr_state)
transitions[final_state][''] = set([final_state]) # create key first to avoid changing size of keys below
for state in transitions.iterkeys():
epsilon_reached_states = set()
dfs(transitions, state, set(), epsilon_reached_states)
transitions[state][''] = epsilon_reached_states
def match_NFA(transitions, initial_state, final_state, X): # Time: O(RlogB) ~ O((2^R)logB), Space: O(R) ~ O(2^R), ps. NFA for exact string matching rather than range count is only Time: O(RlogB), Space: O(R)
x_digits = map(int, list(str(X)))
count_state = {(True, True, frozenset([initial_state])):1}
for index in xrange(len(x_digits)): # O(logB) times
new_count_state = defaultdict(int)
new_count_state[True, False, frozenset([initial_state])] = 1
assert(len(count_state) <= len(transitions)) # for extreme case, it would be more than 10*R, worst to O(2^R)
for (is_empty, is_prefix_of_x, states), count in count_state.iteritems(): # O(R) times on normal case
for new_digit in xrange(10):
if is_empty and new_digit == 0:
continue # numbers can't start with 0
if is_prefix_of_x and new_digit > x_digits[index]:
continue # numbers can't be greater than X
new_possible_states = set()
for start_state in states: # find all possible states if new_digit was next in the string
for epsilon_state in transitions[start_state]['']:
new_possible_states |= transitions[epsilon_state][new_digit]
if not new_possible_states:
continue
new_count_state[False, is_prefix_of_x and new_digit == x_digits[index], frozenset(new_possible_states)] += count
count_state = new_count_state
count_match = 0
for (_, _, states), count in count_state.iteritems():
if any(final_state in transitions[end_state][''] for end_state in states):
count_match += count # NFA matching may include empty string, which would be excluded after substraction
return count_match
def integeregex():
A, B = map(int, raw_input().strip().split())
R = raw_input().strip()
transitions = defaultdict(lambda: defaultdict(set))
initial_state, final_state = make_NFA(R, [0], [0], transitions)
make_epsilon_reached_NFA(transitions, final_state)
return match_NFA(transitions, initial_state, final_state, B) - \
match_NFA(transitions, initial_state, final_state, A-1)
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, integeregex())