-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathadjacent_and_consecutive.py
96 lines (87 loc) · 3.12 KB
/
adjacent_and_consecutive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2020 kamyu. All rights reserved.
#
# Google Code Jam 2020 Virtual World Finals - Problem B. Adjacent and Consecutive
# https://codingcompetitions.withgoogle.com/codejam/round/000000000019ff31/00000000003b53ce
#
# Time: O(N^4)
# Space: O(N)
#
from collections import Counter
def can_win_immediately(tiles, cells): # Time: O(N)
for c in xrange(len(cells)):
if cells[c] != -2:
continue
for nc in ((c-1), (c+1)):
if not (0 <= nc < len(cells) and cells[nc] != -2):
continue
m = cells[nc]
for nm in ((m-1), (m+1)):
if 0 <= nm < len(tiles) and tiles[nm] == -2:
return True
return False
def compress_state(arr): # Time: O(N)
c, counter = 0, Counter()
for x in arr:
if x != -2:
if c:
counter[c] += 1
c = 0
continue
c += 1
if c:
counter[c] += 1
return counter
def count_of_3_or_up(counter): # Time: O(1)
return len(counter)-int(1 in counter)-int(2 in counter)
def is_A_winning_state(Lt, Lc): # Time: O(N)
K = sum(k*v for k, v in Lc.iteritems()) # k is either 1 or 2
Z = sum((k//2)*v for k, v in Lt.iteritems())
if K == 2:
return Lc[2] == Z == 1
return K%2 == 1 and 2*(Lc[2]+Z) > K
def is_A_winning(tiles, cells): # Time: O(N)
if can_win_immediately(tiles, cells): # can win in 1 moves
return True
Lt, Lc = compress_state(tiles), compress_state(cells)
if count_of_3_or_up(Lt) < count_of_3_or_up(Lc):
Lt, Lc = Lc, Lt
if count_of_3_or_up(Lc): # can win in 2 moves
return True
return is_A_winning_state(Lt, Lc)
def is_B_winning(tiles, cells): # Time: O(N^3)
can_B_win = True
for i in xrange(len(tiles)):
if tiles[i] != -2:
continue
for j in xrange(len(cells)):
if cells[j] != -2:
continue
tiles[i], cells[j] = j, i
A_already_won = (j-1 >= 0 and abs(i-cells[j-1]) == 1) or (j+1 < len(cells) and abs(i-cells[j+1]) == 1)
can_B_win = not A_already_won and not is_A_winning(tiles, cells)
tiles[i], cells[j] = -2, -2
if can_B_win:
return True
return can_B_win
def adjacent_and_consecutive():
N = input()
result, tiles, cells, prev = [0, 0], [-2]*N, [-2]*N, True
A_already_won = False # A can win in 0 moves
for i in xrange(N):
M, C = map(int, raw_input().strip().split())
M, C = M-1, C-1
tiles[M], cells[C] = C, M
if not A_already_won:
A_already_won = (C-1 >= 0 and abs(M-cells[C-1]) == 1) or (C+1 < len(cells) and abs(M-cells[C+1]) == 1)
if i%2 == 0:
curr = is_B_winning(tiles, cells) if not A_already_won else False
if prev and curr:
result[i%2] += 1
else:
curr = A_already_won or is_A_winning(tiles, cells)
if prev and curr:
result[i%2] += 1
prev = curr
return "%s %s" % tuple(result)
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, adjacent_and_consecutive())