-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
118 lines (105 loc) · 4.59 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
Wrapper around `toupee` binaries to ease further development of native code,
and to simplify global configuration set up.
"""
import os
from config import config
# TODO: Switch to CLI args.
# TODO: Move CLI handling from base_model to here.
# TODO: Use level-logging.
# TODO: Parameter supply needs major fixing for non-required fields
## base_model.py configurations (SET HERE; "" to OMIT)
## ensemble.py configurations (SET HERE; "" to OMIT)
def run_base_model():
root_path = config.get('ROOT_PATH')
params_file = os.path.join(config.get('ROOT_PATH'), "tests", "mnist_test", "parameters.yml") # REQUIRED
save_file = ""
num_epochs = "1"
tensorboard = ""
adv_testing = ""
wandb_store = ""
wandb_project = ""
wandb_group = ""
# help text for arguments (reproduced, in part, from toupee)
'''
root_path: base path from where all relative paths will be referenced
parser.add_argument('params_file', help='the parameters file')
parser.add_argument('save_file', nargs='?',
help='the file where the trained MLP is to be saved')
parser.add_argument('--epochs', type=int, nargs='?',
help='number of epochs to run')
parser.add_argument('--tensorboard', action="store_true",
help="Save training graphs to TensorBoard")
parser.add_argument('--adversarial-testing', action="store_true",
help="Test for adversarial robustness")
parser.add_argument('--wandb', action="store_true",
help="Send results to Weights and Biases")
parser.add_argument('--wandb-project', type=str, help="Weights and Biases project name")
parser.add_argument('--wandb-group', type=str, help="Weights and Biases group name")
'''
print("[INFO] Parameter file: ", params_file)
_cmd = 'python toupee/bin/base_model.py {root_path} {params} {save} {epochs} {tboard} {adv_testing} {wandb_store} {wandb_project} {wandb_group}'.format(
root_path = root_path,
params = params_file,
save = save_file,
epochs = num_epochs,
tboard = tensorboard,
adv_testing = adv_testing,
wandb_store = wandb_store,
wandb_project = wandb_project,
wandb_group = wandb_group
)
print("[DEBUG]", _cmd)
os.system(_cmd)
def run_ensemble_model():
root_path = config.get('ROOT_PATH')
params_file = os.path.join(config.get('ROOT_PATH'), "tests", "cifar10_dib_test", "parameters.yml") # REQUIRED
save_file = ""
num_epochs = "1"
ensemble_size = ""
tensorboard = ""
adv_testing = ""
wandb_store = ""
wandb_project = ""
wandb_group = ""
distil = ""
# help text for arguments (reproduced, in part, from toupee)
'''
root_path: base path from where all relative paths will be referenced
parser.add_argument('params_file', help='the parameters file')
parser.add_argument('save_file', nargs='?',
help='the file where the trained MLP is to be saved')
parser.add_argument('--epochs', type=int, nargs='?',
help='Override number of epochs to run')
parser.add_argument('--size', type=int, nargs='?',
help='Override Ensemble size')
parser.add_argument('--adversarial-testing', action="store_true",
help="Test for adversarial robustness")
parser.add_argument('--tensorboard', action="store_true",
help="Save training graphs to TensorBoard")
parser.add_argument('--wandb', action="store_true",
help="Send results to Weights and Biases")
parser.add_argument('--wandb-project', type=str, help="Weights and Biases project name")
parser.add_argument('--wandb-group', type=str, help="Weights and Biases group name")
parser.add_argument('--distil', action="store_true",
help="Create a distilled network from the Ensemble")
'''
print("[INFO] Parameter file: ", params_file)
_cmd = 'python toupee/bin/ensemble.py {root_path} {params} {save} {epochs} {size} {tboard} {adv_testing} {wandb_store} {wandb_project} {wandb_group} {distil}'.format(
root_path = root_path,
params = params_file,
save = save_file,
epochs = num_epochs,
size = ensemble_size,
tboard = tensorboard,
adv_testing = adv_testing,
wandb_store = wandb_store,
wandb_project = wandb_project,
wandb_group = wandb_group,
distil = distil
)
print("[DEBUG]", _cmd)
os.system(_cmd)
if __name__=='__main__':
# run_base_model()
run_ensemble_model()