-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy paththreeBodyProbDEV.jl
executable file
·776 lines (733 loc) · 44.2 KB
/
threeBodyProbDEV.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#!/usr/bin/env julia
using Plots, Random, Printf, Plots.Measures
function initCondGen() #get random initial conditions for mass/radius, position, and velocity
function getMass(nBodies) #generate random masses that better reflect actual stellar populations
mList=zeros(nBodies)
N=(0.5^(-1.3)-150^(-1.3))/1.3 #crude approximation of IMF integral assuming alpha = 2.3, stellar mass range of 0.5:150 solar masses
rescale=1e6
max=floor(Int,N*rescale)
for i=1:nBodies
intTarget=rand(0:max,1)[1]/rescale
m=(0.5^(-1.3)-intTarget*1.3)^(-1/1.3) #just algebra from above
mList[i]=round(m,digits=2)
end
return mList
end
m=rand(1:1500,3)./10 #3 random masses between 0.1 and 150 solar masses, uniform distribution
#m=getMass(3) #get mass from IMF -- this way is kind of boring...so not using it, but left here in case I change my mind?
rad=m.^0.8 #3 radii based on masses in solar units
m=m.*2e30 #convert to SI kg
rad=rad.*7e8 #convert to SI m
pos1=rand(-35:35,2) #random initial coordinates x & y for first body, AU
function genPos2(pos1)
accept2=false
while accept2==false
pos2=rand(-35:35,2) #random initial coordinates for second body, AU
dist21=sqrt((pos1[1]-pos2[1])^2+(pos1[2]-pos2[2])^2)
if (dist21*1.5e11)>(rad[1]+rad[2]) #they aren't touching
accept2=true
return pos2
end
end
end
pos2=genPos2(pos1)
function genPos3(pos1,pos2)
accept3=false
while accept3==false
pos3=rand(-35:35,2) #random initial coordinates for third body, AU
dist31=sqrt((pos1[1]-pos3[1])^2+(pos1[2]-pos3[2])^2)
dist32=sqrt((pos2[1]-pos3[1])^2+(pos2[2]-pos3[2])^2)
if (dist31*1.5e11)>(rad[1]+rad[3]) && (dist32*1.5e11)>(rad[2]+rad[3]) #3rd isn't touching either
accept3=true
return pos3
end
end
end
pos3=genPos3(pos1,pos2)
pos=[pos1[1],pos1[2],pos2[1],pos2[2],pos3[1],pos3[2]].*1.5e11 #convert accepted positions to SI, m
v=rand(-7e3:7e3,6) #random x & y velocities with mag between -10 & 10 km/s, totally arbitrary...
#r=[x1,y1,x2,y2,x3,y3,v1x,v1y,v2x,v2y,v3x,v3y]
r=[pos[1],pos[2],pos[3],pos[4],pos[5],pos[6],v[1],v[2],v[3],v[4],v[5],v[6]]
open("initCond.txt","w") do f #save initial conditions to file in folder where script is run
write(f,"m1=$(@sprintf("%.1f",(m[1]/2e30))) m2=$(@sprintf("%.1f",(m[2]/2e30))) m3=$(@sprintf("%.1f",(m[3]/2e30))) (solar masses)\nv1x=$(v[1]/1e3) v1y=$(v[2]/1e3) v2x=$(v[3]/1e3) v2y=$(v[4]/1e3) v3x=$(v[5]/1e3) v3y=$(v[6]/1e3) (km/s)\nx1=$(pos1[1]) y1=$(pos1[2]) x2=$(pos2[1]) y2=$(pos2[2]) x3=$(pos3[1]) y3=$(pos3[2]) (AU from center)")
end
return r, rad, m
end
function dR(r,m;energyBool=0) #function we will use RK4 on to approximate solution
G=6.67408313131313e-11# Nm^2/kg^2
M1,M2,M3=m[1],m[2],m[3] #kg
x1,x2,x3=r[1],r[3],r[5] #m
y1,y2,y3=r[2],r[4],r[6] #m
c1,c2,c3=G*M1,G*M2,G*M3 #Nm^2/kg
r1_2=sqrt((x1-x2)^2+(y1-y2)^2) #distance from 1->2, m
r1_3=sqrt((x1-x3)^2+(y1-y3)^2) #distance from 1->3, m
r2_3=sqrt((x2-x3)^2+(y2-y3)^2) #distance from 2->3, m
v1X,v2X,v3X=r[7],r[9],r[11] #these are our change in position after dt (dr/dt*dt=dr)
v1Y,v2Y,v3Y=r[8],r[10],r[12] #m after * dt
#get change in velocity from accelerations (d^2r/dt^2*dt=dv/dt*dt=dv)
aX1=-(c2*(x1-x2)/(r1_2^3))-(c3*(x1-x3)/(r1_3^3)) #d^2x/dt^2 for 1, m/s after * dt
aX2=-(c1*(x2-x1)/(r1_2^3))-(c3*(x2-x3)/(r2_3^3)) #d^2x/dt^2 for 2, m/s
aX3=-(c1*(x3-x1)/(r1_3^3))-(c2*(x3-x2)/(r2_3^3)) #d^2x/dt^2 for 3, m/s
aY1=-(c2*(y1-y2)/(r1_2^3))-(c3*(y1-y3)/(r1_3^3)) #d^2y/dt^2 for 1, m/s
aY2=-(c1*(y2-y1)/(r1_2^3))-(c3*(y2-y3)/(r2_3^3)) #d^2y/dt^2 for 2, m/s
aY3=-(c1*(y3-y1)/(r1_3^3))-(c2*(y3-y2)/(r2_3^3)) #d^2y/dt^2 for 3, m/s
global energy #keep track of energy loss from RK4 error
U=-G*M1*M2/r1_2-G*M2*M3/r2_3-G*M1*M3/r1_3 #grav potential
K=0.5*M1*(v1X^2+v1Y^2)+0.5*M2*(v2X^2+v2Y^2)+0.5*M3*(v3X^2+v3Y^2) #kinetic
if energyBool==1
push!(energy,K+U) #total system energy
end
return [v1X,v1Y,v2X,v2Y,v3X,v3Y,aX1,aY1,aX2,aY2,aX3,aY3]
end
function gen3Body(stopCond=[10,100],numSteps=10000) #default stop conditions of 10 yrs and 100 AU sep
tStop=stopCond[1]*365*24*3600 #convert to SI s
sepStop=stopCond[2]*1.5e11 #convert to SI m
stop=false
currentT=0
t=range(0,stop=tStop,length=(numSteps+1)) #+1 because I don't want 0 to count
stepSize=tStop/numSteps
x1=zeros(length(t))
y1=zeros(length(t))
x2=zeros(length(t))
y2=zeros(length(t))
x3=zeros(length(t))
y3=zeros(length(t))
r,rad,m=initCondGen()
min12=rad[1]+rad[2]
min13=rad[1]+rad[3]
min23=rad[2]+rad[3]
i=1
stopT=maximum(t)
collisionBool=false; collisionInds=[]
#implement RK4 to model solutions to differential equations
while stop==false
if currentT==stopT || currentT>stopT #in case of rounding error or something
stop=true
elseif i>(numSteps+1) #inf loop failsafe
stop=true
println("error: shouldn't have gotten here")
else
x1[i]=r[1] #store current positions
y1[i]=r[2]
x2[i]=r[3]
y2[i]=r[4]
x3[i]=r[5]
y3[i]=r[6]
k1=stepSize*dR(r,m,energyBool=1)
k2=stepSize*dR(r.+0.5.*k1,m)
k3=stepSize*dR(r.+0.5.*k2,m)
k4=stepSize*dR(r.+k3,m)
r+=(k1.+2.0*k2.+2.0.*k3.+k4)./6 #RK4 update to positions, velocities
#check separation after each dt step
sep12=sqrt((x1[i]-x2[i])^2+(y1[i]-y2[i])^2)
sep13=sqrt((x1[i]-x3[i])^2+(y1[i]-y3[i])^2)
sep23=sqrt((x3[i]-x2[i])^2+(y3[i]-y2[i])^2)
if sep12<min12 || sep13<min13 || sep23<min23 || sep12>sepStop || sep13>sepStop || sep23>sepStop
if sep12<min12 || sep13<min13 || sep23<min23
collisionBool=true
if sep12<min12
collisionInds=[1,2]
elseif sep13<min13
collisionInds=[1,3]
elseif sep23<min23
collisionInds=[2,3]
end
else
collisionBool=false
end
stop=true #stop if collision happens or body is ejected
t=range(0,stop=currentT,length=i) #t should match pos vectors
x1=x1[1:i] #don't want trailing zeros
y1=y1[1:i]
x2=x2[1:i]
y2=y2[1:i]
x3=x3[1:i]
y3=y3[1:i]
end
i+=1
currentT+=stepSize #next step
end
end
return [x1,y1,x2,y2,x3,y3], t, m, rad, collisionBool, collisionInds
end
function getInteresting3Body(minTime=0) #in years, defaults to 0
#sometimes random conditions result in a really short animation where things
#just crash into each other/fly away, so this function throws away those
yearSec=365*24*3600
interesting=false
i=1
while interesting==false
global energy=[] #re-initialize empty energy array
plotData,t,m,rad,collisionBool,collisionInds=gen3Body([50,150],500000)
if (maximum(t)/yearSec)>minTime #only return if simulation runs for longer than minTime
println(maximum(t)/yearSec) #tell me how many years we are simulating
open("cron_log.txt","a") do f #for cron logging, a flag = append
write(f,"$(maximum(t)/yearSec)\n")
end
return plotData,t,m,rad,collisionBool,collisionInds
interesting=true
elseif i>1999 #computationally expensive so don't want to go forever
interesting=true #render it anyways I guess because sometimes it's fun?
println("did not find interesting solution in number of tries allotted, running anyways")
println(maximum(t)/yearSec) #how many years simulation runs for
open("cron_log.txt","a") do f #for cron logging
write(f,"found a solution with t = $(maximum(t)/yearSec) in $i iterations\n")
end
return plotData,t,m,rad,collisionBool,collisionInds
end
i+=1
end
end
function detectOrbiting(d1_2,d1_3,d2_3,m,x,y)
if d1_2/d2_3 > 2 && d1_3/d2_3 > 2 #objects 2 and 3 are orbiting?
orbiting=23
cmX=(m[2]*x[2]+m[3]*x[3])/(m[2]+m[3]) #get centers of mass to use in limit calculations to prevent oscillations
cmY=(m[2]*y[2]+m[3]*y[3])/(m[2]+m[3])
xNew=[x[1],cmX]
yNew=[y[1],cmY]
return orbiting,xNew,yNew
elseif d2_3/d1_2 > 2 && d1_3/d1_2 > 2 #objects 2 and 1 are orbiting?
orbiting=21
cmX=(m[2]*x[2]+m[1]*x[1])/(m[2]+m[1]) #get centers of mass
cmY=(m[2]*y[2]+m[1]*y[1])/(m[2]+m[1])
xNew=[x[3],cmX]
yNew=[y[3],cmY]
return orbiting,xNew,yNew
elseif d1_2/d1_3 > 2 && d2_3/d1_3 > 2 #objects 1 and 3 are orbiting?
orbiting=13
cmX=(m[1]*x[1]+m[3]*x[3])/(m[1]+m[3]) #get centers of mass
cmY=(m[1]*y[1]+m[3]*y[3])/(m[1]+m[3])
xNew=[x[2],cmX]
yNew=[y[2],cmY]
return orbiting,xNew,yNew
else #no pairs orbiting
return 0,x,y
end
end
function getLims(xNew,yNew,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
cX,cY=sum(xNew)/length(xNew),sum(yNew)/length(yNew) #next thing to change..?
dx=maximum(xNew)-minimum(xNew); dy=maximum(yNew)-minimum(yNew)
dF = dx<dy ? dy : dx
xlims=[(cX+ΔCx)-padding-dF/2+ΔL,(cX+ΔCx)+padding+dF/2+ΔR]
ylims=[(cY+ΔCy)-padding-dF/2+ΔD,(cY+ΔCy)+padding+dF/2+ΔU]
return xlims,ylims
end
function getΔC(target,start,pos,extraDx,extraDy,x,y,padding,tol=0.0001,maxIter=100000)
targCx,targCy,targxlims,targylims = target #these are the "old" limits we want offset to
cx,cy = start
ΔCx,ΔCy = cx-targCx,cy-targCy
diffxList = [0.,0.,0.]; diffyList = [0.,0.,0.]
xtargList = [0.,0.,0.]; ytargList = [0.,0.,0.]
# ΔL = ΔR = extraDx/2; ΔU = ΔD = extraDy/2
ΔL,ΔR = extraDx; ΔU,ΔD = extraDy
xlims,ylims = getLims(x,y,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
diff(r,rTarg)=abs(r-rTarg)
for i = 1:length(pos)
Bx,By = pos[i]
rx,ry = relative(xlims,ylims,Bx,By)
rxTarg,ryTarg = relative(targxlims,targylims,Bx,By)
xtargList[i] = rxTarg; ytargList[i] = ryTarg
diffxList[i] = diff(rx,rxTarg); diffyList[i] = diff(ry,ryTarg)
end
diffx,xInd = findmax(diffxList); diffy,yInd = findmax(diffyList)
Bx = pos[xInd][1]; By = pos[yInd][2]
rxTarg = xtargList[xInd]; ryTarg = ytargList[yInd]
if diffx<tol && diffy<tol #less than 1% diff between calc
return xlims,ylims,ΔCx,ΔCy
else
dx = targxlims[2]-targxlims[1]; dy = targylims[2]-targylims[1]
function getDir(targxlims,targylims,ΔCx,ΔCy,tol,dx,dy)
acceptXDir = false; acceptYDir = false
signdx = diffx<tol ? 0 : -1; signdy = diffy<tol ? 0 : -1
counter = 1
println("\nfinding sign directions for center shifts\n")
while acceptXDir == false || acceptYDir == false
if acceptXDir == false
signdx=signdx^counter
end
if acceptYDir == false
signdy=signdy^counter
end
guessX = ΔCx+signdx*dx*tol/10; guessY = ΔCy+signdy*dy*tol/10
xlims,ylims = getLims(x,y,padding,guessX,guessY,ΔL,ΔR,ΔU,ΔD)
rx,ry = relative(xlims,ylims,Bx,By)
newDiffx=diff(rx,rxTarg); newDiffy=diff(ry,ryTarg)
# println("COUNTER = $counter")
# println("diffx = $diffx : newDiffx = $newDiffx")
# println("rx = $rx : rx target = $rxTarg")
# println("diffy = $diffy : newDiffy = $newDiffy")
# println("ry = $ry : ry target = $ryTarg")
#println("x sign = $signdx; y sign = $signdy")
acceptXDir = newDiffx<=diffx; acceptYDir = newDiffy<=diffy
if counter>2
println("changing center sign has no effect")
break
end
counter+=1
end
return signdx,signdy,guessX,guessY
end
signdx,signdy,guessX,guessY = getDir(targxlims,targylims,ΔCx,ΔCy,tol,dx,dy)
counter = 2
stopX = false; stopY = false
println("\nfinding shift to tolerance\n")
while diffx>tol || diffy>tol
if stopX == false
guessX = ΔCx+signdx*dx*tol/10*counter
end
if stopY == false
guessY = ΔCy+signdy*dy*tol/10*counter
end
xlims,ylims = getLims(x,y,padding,guessX,guessY,ΔL,ΔR,ΔU,ΔD)
rx,ry = relative(xlims,ylims,Bx,By)
diffx=diff(rx,rxTarg); diffy=diff(ry,ryTarg)
stopX = diffx<tol; stopY = diffy<tol
counter+=1
if counter == maxIter
println("did not converge in $maxIter iterations")
println("diffx = $diffx : diffY = $diffy")
println("guessX = $(guessX+cx) : actual X = $targCx\nstarted at X = $(cx+ΔCx) with Δcx = $(signdx*dx*0.001)")
println("guessY = $(guessY+cy) : actual Y = $targCy\nstarted at Y = $(cy+ΔCy) with Δcy = $(signdy*dy*0.001)")
xrange = tol*2*dx; yrange = tol*2*dy
println("x tolerance = $xrange; y tolerance = $yrange")
exit()
end
end
println("found suitable shift in $counter iterations")
println("diffx = $diffx; diffy = $diffy")
return xlims,ylims,guessX,guessY
end
end
relative(xlims,ylims,x,y)=(x-xlims[1])/(xlims[2]-xlims[1]),(y-ylims[1])/(ylims[2]-ylims[1])
center(xy) = sum(xy)/length(xy)
function comparePos(stableOld,orbitOld,orbiting,m,x,y,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
orbitStr = orbiting!=0 ? string(orbiting) : string(orbitOld) #was the old one orbiting or is this one orbiting?
i1,i2=parse(Int64,string(orbitStr[1])),parse(Int64,string(orbitStr[2])) #indices of two orbiting bodies
inds = [1,2,3]; otherInd = 0 #trying to make generalization to n-bodies easier
for i = 1:length(inds)
if inds[i] != i1 && inds[i] != i2
otherInd = i
end
end
cmX=(m[i1]*x[i1]+m[i2]*x[i2])/(m[i1]+m[i2]) #get centers of mass
cmY=(m[i1]*y[i1]+m[i2]*y[i2])/(m[i1]+m[i2])
xNew=[x[otherInd],cmX]
yNew=[y[otherInd],cmY]
xlimsOrbit,ylimsOrbit=getLims(xNew,yNew,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
xlimsNorm,ylimsNorm=getLims(x,y,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
################# this is what we would have done if DEBUG == 3 #############
if stableOld[1] == false
global LIMIT_DEBUG = 31
if stableOld[2] == 0
xtmp = x; ytmp = y
else
i1,i2,otherInd=stableOld[3],stableOld[4],stableOld[5]
cmX=(m[i1]*x[i1]+m[i2]*x[i2])/(m[i1]+m[i2]) #get centers of mass
cmY=(m[i1]*y[i1]+m[i2]*y[i2])/(m[i1]+m[i2])
xtmp=[x[otherInd],cmX]
ytmp=[y[otherInd],cmY]
end
# ΔCx*=0.9;ΔCy*=0.9;ΔL*=0.9;ΔR*=0.9;ΔU*=0.9;ΔD*=0.9
#else ############ this is what we would have done if DEBUG == 0 #############
# ΔCx*=0.9;ΔCy*=0.9;ΔL*=0.9;ΔR*=0.9;ΔU*=0.9;ΔD*=0.9
end
#oldxlims,oldylims = getLims(xtmp,ytmp,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
#oldCx = center(xtmp); oldCy = center(ytmp)
#############################################################################
function getOld(orbitOld,xlimsOrbit,ylimsOrbit,xlimsNorm,ylimsNorm,x,y,xNew,yNew)
if orbitOld != 0 #thing was orbiting
oldxlims,oldylims = xlimsOrbit,ylimsOrbit
oldCx,oldCy = center(xNew),center(yNew)
return oldxlims,oldylims,oldCx,oldCy
else
oldxlims,oldylims = xlimsNorm,ylimsNorm
oldCx,oldCy = center(x),center(y)
return oldxlims,oldylims,oldCx,oldCy
end
end
oldxlims,oldylims,oldCx,oldCy = getOld(orbitOld,xlimsOrbit,ylimsOrbit,xlimsNorm,ylimsNorm,x,y,xNew,yNew)
if orbiting != 0 #transitioning to orbiting, frame instantaneously wants to shrink
global LIMIT_DEBUG
if LIMIT_DEBUG == 31
global LIMIT_DEBUG = "1.31"
else
global LIMIT_DEBUG = 1
end
cx = center(xNew); cy = center(yNew)
# ΔCx = cx - (oldCx)
# ΔCy = cy - (oldCy)
ΔL = oldxlims[1]-xlimsOrbit[1]; ΔR = oldxlims[2]-xlimsOrbit[2]
ΔU = oldylims[2]-ylimsOrbit[2]; ΔD = oldylims[1]-ylimsOrbit[1]
# extraDx = (xlimsOrbit[2]-xlimsOrbit[1]) - (oldxlims[2]-oldxlims[1])
# extraDy = (ylimsOrbit[2]-ylimsOrbit[1]) - (oldylims[2]-oldylims[1])
extraDx=[ΔL,ΔR]; extraDy=[ΔU,ΔD]
xlims,ylims,ΔCx,ΔCy = getΔC([oldCx,oldCy,oldxlims,oldylims],[cx,cy],[[x[1],y[1]],[x[2],y[2]],[x[3],y[3]]],extraDx,extraDy,xNew,yNew,padding)
# ΔL = extraDx/2; ΔR = extraDx/2; ΔU = extraDy/2; ΔD = extraDy/2
#xlims, ylims = getLims(xNew,yNew,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
return xlims,ylims,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD
else #transitioning from orbiting, frame instantaneously wants to expand
global LIMIT_DEBUG
if LIMIT_DEBUG == 31
global LIMIT_DEBUG = "2.31"
else
global LIMIT_DEBUG = 2
end
cx = center(x); cy = center(y)
# ΔCx = cx - (oldCx)
# ΔCy = cy - (oldCy)
ΔL = oldxlims[1]-xlimsNorm[1]; ΔR = oldxlims[2]-xlimsNorm[2]
ΔU = oldylims[2]-ylimsNorm[2]; ΔD = oldylims[1]-ylimsNorm[1]
extraDx=[ΔL,ΔR]; extraDy=[ΔU,ΔD]
# extraDx = 1*((xlimsOrbit[2]-xlimsOrbit[1]) - (oldxlims[2]-oldxlims[1]))
# extraDy = 1*((ylimsOrbit[2]-ylimsOrbit[1]) - (oldylims[2]-oldylims[1]))
xlims,ylims,ΔCx,ΔCy = getΔC([oldCx,oldCy,oldxlims,oldylims],[cx,cy],[[x[1],y[1]],[x[2],y[2]],[x[3],y[3]]],extraDx,extraDy,x,y,padding)
# ΔL = extraDx/2; ΔR = extraDx/2; ΔU = extraDy/2; ΔD = extraDy/2
#xlims, ylims = getLims(x,y,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
return xlims,ylims,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD
end
end
function computeLimits(pos,posFuture,padding,m,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld) #determines plot limits at each frame, padding in units of pos
x=[pos[1],pos[3],pos[5]]
y=[pos[2],pos[4],pos[6]]
d1_2=sqrt((x[1]-x[2])^2 + (y[1]-y[2])^2)
d1_3=sqrt((x[1]-x[3])^2 + (y[1]-y[3])^2)
d2_3=sqrt((x[2]-x[3])^2 + (y[2]-y[3])^2)
orbiting,xNew,yNew = detectOrbiting(d1_2,d1_3,d2_3,m,x,y)
stable = [true]
if orbiting != orbitOld
xlims,ylims,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD = comparePos(stableOld,orbitOld,orbiting,m,x,y,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
else
global LIMIT_DEBUG = 0
relax = 0.95
ΔCx*=relax;ΔCy*=relax;ΔL*=relax;ΔR*=relax;ΔU*=relax;ΔD*=relax
xlims,ylims = getLims(xNew,yNew,padding,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD)
#xlims,ylims,ΔCx,ΔCy = getΔC([oldCx,oldCy,oldxlims,oldylims],[cx,cy],[x[1],y[1]],extraDx,extraDy,xNew,yNew,padding))
end
cNew = [(xlims[2]-xlims[1])/2+xlims[1],(ylims[2]-ylims[1])/2+ylims[1]]
return xlims,ylims,cNew,orbiting,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stable
end
function getColors(m,c) #places colors of objects according to mass/size
#c=[:biggest,:medium,:smallest] (order of input colors)
maxM=maximum(m)
minM=minimum(m)
colors=[:DodgerBlue,:DodgerBlue,:DodgerBlue] #testing
if m[1]==maxM
colors[1]=c[1]
if m[2]==minM
colors[2]=c[3]
colors[3]=c[2]
else
colors[3]=c[3]
colors[2]=c[2]
end
elseif m[2]==maxM
colors[2]=c[1]
if m[1]==minM
colors[1]=c[3]
colors[3]=c[2]
else
colors[3]=c[3]
colors[1]=c[2]
end
else
colors[3]=c[1]
if m[1]==minM
colors[1]=c[3]
colors[2]=c[2]
else
colors[2]=c[3]
colors[1]=c[2]
end
end
return colors
end
function makeCircleVals(r,center=[0,0])
xOffset=center[1]
yOffset=center[2]
xVals=[r*cos(i)+xOffset for i=0:(pi/64):(2*pi)]
yVals=[r*sin(i)+yOffset for i=0:(pi/64):(2*pi)]
return xVals,yVals
end
LIMIT_DEBUG = 0
function main()
plotData,t,m,rad,collisionBool,collisionInds=getInteresting3Body(5)
if collisionBool == true
println("collision! inds = $collisionInds")
else
println("no collision :(")
end
c=[:DodgerBlue,:Gold,:Tomato] #most massive to least massive, also roughly corresponds to temp
colors=getColors(m,c)
#adding fake stars
numStars=2500
starsX=zeros(numStars)
starsY=zeros(numStars)
for i=1:numStars
num=rand(-200:200,2) #box size is 70 AU but we need some extra padding for movement
starsX[i]=num[1]
starsY[i]=num[2]
end
function getRatioRight(ratio,dx,dy)
which = "x"
if (dx/dy)!=ratio
if dx>(ratio*dy)
dy=dx/ratio
else
dx=dy*ratio
which = "y"
end
end
return dx,dy,which
end
function relative(p::Plots.Subplot, rx, ry) #so I can plot in relative to parent
xlims=Plots.xlims(p)
ylims=Plots.ylims(p)
return xlims[1]+rx*(xlims[2]-xlims[1]), ylims[1]+ry*(ylims[2]-ylims[1])
end
frameNum=1
stop=length(t)
if collisionBool==true
stop=length(t)-600
end
listInd=0
limList=[]
ratio=1
offsetX = 0.; offsetY = 0.
orbitOld = 0
center = [0.,0.]; vel = [0.,0.]
ΔCx = 0.;ΔCy = 0.;ΔL = 0.;ΔR = 0.;ΔU = 0.;ΔD = 0.
stableOld = [true]
global LIMIT_DEBUG
println("energy loss = $((energy[end]-energy[1])/energy[1]*100) %")
for i=1:333:stop #this makes animation scale ~1 sec/year with other conditions
GR.inline("png") #added to eneable cron/jobber compatibility, also this makes frames generate WAY faster? Prior to adding this when run from cron/jobber frames would stop generating at 408 for some reason.
gr(legendfontcolor = plot_color(:white)) #legendfontcolor=:white plot arg broken right now (at least in this backend)
print("$(@sprintf("%.2f",i/length(t)*100)) % complete\r") #output percent tracker
pos=[plotData[1][i],plotData[2][i],plotData[3][i],plotData[4][i],plotData[5][i],plotData[6][i]] #current pos
future = i+500<stop ? i+500 : i #make sure we don't go past end of data
posFuture=[plotData[1][future],plotData[2][future],plotData[3][future],plotData[4][future],plotData[5][future],plotData[6][future]] #future pos
limx,limy,center,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld=computeLimits(pos./1.5e11,posFuture./1.5e11,15,m,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld) #convert to AU, 10 AU padding
dx,dy=(limx[2]-limx[1]),(limy[2]-limy[1])
dx,dy,which0=getRatioRight(ratio,dx,dy)
if listInd>1
oldLimx,oldLimy=limList[listInd][1],limList[listInd][2]
oldDx,oldDy=oldLimx[2]-oldLimx[1],oldLimy[2]-oldLimy[1]
maxContraction=0.98; maxExpansion=1.02
if dx/oldDx<maxContraction #frame shrunk more than 5%
LIMIT_DEBUG = "$LIMIT_DEBUG : 99 x"
limx[1]=center[1]-oldDx*maxContraction/2
limx[2]=center[1]+oldDx*maxContraction/2
limy[1]=center[2]-oldDx*maxContraction/2
limy[2]=center[2]+oldDx*maxContraction/2
elseif dx/oldDx>maxExpansion #grew more than 5%
limx[1]=center[1]-oldDx*maxExpansion/2
limx[2]=center[1]+oldDx*maxExpansion/2
limy[1]=center[2]-oldDx*maxExpansion/2
limy[2]=center[2]+oldDx*maxExpansion/2
LIMIT_DEBUG = "$LIMIT_DEBUG : 101 x"
elseif dy/oldDy<maxContraction
limx[1]=center[1]-oldDy*maxContraction/2
limx[2]=center[1]+oldDy*maxContraction/2
limy[1]=center[2]-oldDy*maxContraction/2
limy[2]=center[2]+oldDy*maxContraction/2
LIMIT_DEBUG = "$LIMIT_DEBUG : 99 y"
elseif dy/oldDy>maxExpansion
limx[1]=center[1]-oldDy*maxExpansion/2
limx[2]=center[1]+oldDy*maxExpansion/2
limy[1]=center[2]-oldDy*maxExpansion/2
limy[2]=center[2]+oldDy*maxExpansion/2
LIMIT_DEBUG = "$LIMIT_DEBUG : 101 y"
end
end
listInd+=1
dx,dy=(limx[2]-limx[1]),(limy[2]-limy[1])
dx,dy,whichF=getRatioRight(ratio,dx,dy)
limx = [center[1]-dx/2,center[1]+dx/2]
limy = [center[2]-dy/2,center[2]+dy/2]
push!(limList,[limx,limy])
p=plot(plotData[1][1:33:i]./1.5e11,plotData[2][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[1],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #plot orbits up to i
p=plot!(plotData[3][1:33:i]./1.5e11,plotData[4][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[2],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #linealpha argument causes lines to decay
p=plot!(plotData[5][1:33:i]./1.5e11,plotData[6][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[3],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #example: alpha=max.((1:i) .+ 100 .- i,0) causes only last 100 to be visible
p=scatter!(starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
star1=makeCircleVals(rad[1],[plotData[1][i],plotData[2][i]]) #generate circles with appropriate sizes for each star
star2=makeCircleVals(rad[2],[plotData[3][i],plotData[4][i]]) #at current positions
star3=makeCircleVals(rad[3],[plotData[5][i],plotData[6][i]])
p=plot!(star1[1]./1.5e11,star1[2]./1.5e11,label="$(@sprintf("%.1f", m[1]./2e30))",color=colors[1],fill=true) #plot star circles with labels
p=plot!(star2[1]./1.5e11,star2[2]./1.5e11,label="$(@sprintf("%.1f", m[2]./2e30))",color=colors[2],fill=true)
p=plot!(star3[1]./1.5e11,star3[2]./1.5e11,label="$(@sprintf("%.1f", m[3]./2e30))",color=colors[3],fill=true)
p=plot!(background_color=:black,background_color_legend=:transparent,foreground_color_legend=:transparent,
background_color_outside=:white,aspect_ratio=:equal,legendtitlefontcolor=:white,legendfontfamily="Courier") #formatting for plot frame
p=plot!(xlabel="x: AU",ylabel="y: AU",title="Random Three-Body Problem\nt: years after start",
legend=:best,xaxis=("x: AU",(limx[1],limx[2]),font(9,"Courier")),yaxis=("y: AU",(limy[1],limy[2]),font(9,"Courier")),tickfontcolor=:white,
grid=false,titlefont=font(14,"Courier"),size=(720,721),legendfontsize=8,legendtitle="Mass (in solar masses)",legendtitlefontsize=8,legendtitlefont="Courier") #add in axes/title/legend with formatting
p=scatter!([center[1]],[center[2]],color=:red,label="center",marker=:xcross)
tX,tY=relative(p[1],0.31,1.044)#static coords for time relative to parent
p = annotate!(tX,tY,Plots.text((@sprintf("%0.2f",t[i]/365/24/3600)),"Courier",14,"black"))
debugX,debugY = relative(p[1],0.5,0.1)
leftX,leftY = relative(p[1],0.1,0.5)
p = annotate!(debugX,debugY,Plots.text("DEBUG = $LIMIT_DEBUG","Times",14,"red"))
p = annotate!(leftX,leftY,Plots.text("frame size = $(round(limy[2]-limy[1],sigdigits=3)) AU\nusing $which0 prior to correction, $whichF after","Times",14,"red",rotation = 90))
png(p,@sprintf("tmpPlots/frame_%06d.png",frameNum))
frameNum+=1
closeall() #close plots
end
if collisionBool==true #this condition makes 2 seconds of slo-mo right before the collision
println("making collision cam")
for i=1:10:600
GR.inline("png") #added to eneable cron/jobber compatibility, also this makes frames generate WAY faster? Prior to adding this when run from cron/jobber frames would stop generating at 408 for some reason.
gr(legendfontcolor = plot_color(:white)) #legendfontcolor=:white plot arg broken right now (at least in this backend)
print("$(@sprintf("%.2f",i/600*100)) % complete\r") #output percent tracker
pos=[plotData[1][end-(600-i)],plotData[2][end-(600-i)],plotData[3][end-(600-i)],plotData[4][end-(600-i)],plotData[5][end-(600-i)],plotData[6][end-(600-i)]] #current pos
posFuture=pos #don't need future position at end
limx,limy,center,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld=computeLimits(pos./1.5e11,posFuture./1.5e11,15,m,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld) #convert to AU, 10 AU padding
p=plot(plotData[1][1:33:end-(600-i)]./1.5e11,plotData[2][1:33:end-(600-i)]./1.5e11,label="",linecolor=colors[1],linewidth=2,linealpha=max.((1:33:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000) #plot orbits up to i
p=plot!(plotData[3][1:33:end-(600-i)]./1.5e11,plotData[4][1:33:end-(600-i)]./1.5e11,label="",linecolor=colors[2],linewidth=2,linealpha=max.((1:33:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000) #linealpha argument causes lines to decay
p=plot!(plotData[5][1:33:end-(600-i)]./1.5e11,plotData[6][1:33:end-(600-i)]./1.5e11,label="",linecolor=colors[3],linewidth=2,linealpha=max.((1:33:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000) #example: alpha=max.((1:i) .+ 100 .- i,0) causes only last 100 to be visible
p=scatter!(starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
star1=makeCircleVals(rad[1],[plotData[1][end-(600-i)],plotData[2][end-(600-i)]]) #generate circles with appropriate sizes for each star
star2=makeCircleVals(rad[2],[plotData[3][end-(600-i)],plotData[4][end-(600-i)]]) #at current positions
star3=makeCircleVals(rad[3],[plotData[5][end-(600-i)],plotData[6][end-(600-i)]])
p=plot!(star1[1]./1.5e11,star1[2]./1.5e11,label="$(@sprintf("%.1f", m[1]./2e30))",color=colors[1],fill=true) #plot star circles with labels
p=plot!(star2[1]./1.5e11,star2[2]./1.5e11,label="$(@sprintf("%.1f", m[2]./2e30))",color=colors[2],fill=true)
p=plot!(star3[1]./1.5e11,star3[2]./1.5e11,label="$(@sprintf("%.1f", m[3]./2e30))",color=colors[3],fill=true)
p=plot!(background_color=:black,background_color_legend=:transparent,foreground_color_legend=:transparent,
background_color_outside=:white,aspect_ratio=:equal,legendtitlefontcolor=:white,legendfontfamily="Courier") #formatting for plot frame
p=plot!(xlabel="x: AU",ylabel="y: AU",title="Random Three-Body Problem\nt: $(@sprintf("%0.2f",t[end-(600-i)]/365/24/3600)) years after start",
legend=:best,xaxis=("x: AU",(limx[1],limx[2]),font(9,"Courier")),yaxis=("y: AU",(limy[1],limy[2]),font(9,"Courier")),
grid=false,titlefont=font(14,"Courier"),size=(720,721),legendfontsize=8,legendtitle="Mass (in solar masses)",legendtitlefontsize=8,legendtitlefont="Courier") #add in axes/title/legend with formatting
#collision cam zoom in
i1,i2=collisionInds #these are the ones that are colliding, we use them to set the frame limits
X=[plotData[1][end-(600-i)],plotData[3][end-(600-i)],plotData[5][end-(600-i)]]./1.5e11; Y=[plotData[2][end-(600-i)],plotData[4][end-(600-i)],plotData[6][end-(600-i)]]./1.5e11
minX=(min(X[i1],X[i2])-1); maxX=(max(X[i1],X[i2])); minY=(min(Y[i1],Y[i2])-1); maxY=(max(Y[i1],Y[i2]))
dx=maxX-minX; dy=maxY-minY
dF=dx<dy ? dy : dx #use dy for frame if dx smaller, else dx
p=plot!(title="COLLISION CAM\n(slo-mo x 33)",titlefontcolor=:orange,inset=(1,bbox(1/8,1/8,0.25,0.25)),
xlims=(minX,minX+dF+1),ylims=(minY,minY+dF+1),legend=:false,left_margin=0mm,right_margin=0mm,top_margin=0mm,bottom_margin=0mm,
foreground_color_border=:white,foreground_color_axis=:white,foreground_color_text=:white,grid=:false,
aspect_ratio=:equal,fontfamily=:Courier,subplot=2,framestyle=:box,titlefontsize=10,tickfontsize=6)
p=plot!(p[2],plotData[1][1:10:end-(600-i)]./1.5e11,plotData[2][1:10:end-(600-i)]./1.5e11,label="",linecolor=colors[1],linewidth=2,linealpha=max.((1:10:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000)
p=plot!(p[2],plotData[3][1:10:end-(600-i)]./1.5e11,plotData[4][1:10:end-(600-i)]./1.5e11,label="",linecolor=colors[2],linewidth=2,linealpha=max.((1:10:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000)
p=plot!(p[2],plotData[5][1:10:end-(600-i)]./1.5e11,plotData[6][1:10:end-(600-i)]./1.5e11,label="",linecolor=colors[3],linewidth=2,linealpha=max.((1:10:(i+length(t)-600)) .+ 10000 .- (i+length(t)-600),2500)/10000)
p=plot!(p[2],star1[1]./1.5e11,star1[2]./1.5e11,color=colors[1],fill=true)
p=plot!(p[2],star2[1]./1.5e11,star2[2]./1.5e11,color=colors[2],fill=true)
p=plot!(p[2],star3[1]./1.5e11,star3[2]./1.5e11,color=colors[3],fill=true)
p=scatter!(p[2],starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
#draw zoom box
cornersX=[minX,minX+dF+1]; cornersY=[minY,minY+dF+1]
p=plot!([cornersX[1],cornersX[2]],[cornersY[1],cornersY[1]],c=:white,label="") #side 1
p=plot!([cornersX[2],cornersX[2]],[cornersY[1],cornersY[2]],c=:white,label="") #side 2
p=plot!([cornersX[1],cornersX[2]],[cornersY[2],cornersY[2]],c=:white,label="") #side 3
p=plot!([cornersX[1],cornersX[1]],[cornersY[1],cornersY[2]],c=:white,label="") #side 4
offset = 0.0125 #for some reason the x corners don't quite match...
s1x,s1y = relative(p[1],1/8-offset,7/8-0.25); s2x,s2y = relative(p[1],1/8+0.25-offset,7/8)
subCornersX=[s1x,s2x]; subCornersY=[s1y,s2y] #physical coordinates, box in top left
p=plot!([subCornersX[1],cornersX[1]],[subCornersY[1],cornersY[1]],c=:white,label = "") #corner 1 -> corner 1
p=plot!([subCornersX[2],cornersX[2]],[subCornersY[2],cornersY[2]],c=:white,label = "") #corner 2 -> corner 2
p=plot!([subCornersX[1],cornersX[1]],[subCornersY[2],cornersY[2]],c=:white,label = "") #corner 3 -> corner 3
p=plot!([subCornersX[2],cornersX[2]],[subCornersY[1],cornersY[1]],c=:white,label = "") #corner 4 -> corner 4
#save frame
png(p,@sprintf("tmpPlots/frame_%06d.png",frameNum))
frameNum+=1
closeall() #close plots
end
println("making freeze frame ending")
for i=1:15 #make 0.5 s freeze frame ending
GR.inline("png") #added to eneable cron/jobber compatibility, also this makes frames generate WAY faster? Prior to adding this when run from cron/jobber frames would stop generating at 408 for some reason.
gr(legendfontcolor = plot_color(:white)) #legendfontcolor=:white plot arg broken right now (at least in this backend)
print("$(@sprintf("%.2f",i/15*100)) % complete\r") #output percent tracker
pos=[plotData[1][end],plotData[2][end],plotData[3][end],plotData[4][end],plotData[5][end],plotData[6][end]] #current pos
posFuture=pos #don't need future position at end
limx,limy,center,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld=computeLimits(pos./1.5e11,posFuture./1.5e11,15,m,orbitOld,ΔCx,ΔCy,ΔL,ΔR,ΔU,ΔD,stableOld) #convert to AU, 10 AU padding
p=plot(plotData[1][1:33:end]./1.5e11,plotData[2][1:33:end]./1.5e11,label="",linecolor=colors[1],linewidth=2,linealpha=max.((1:33:(length(t))) .+ 10000 .- (length(t)),2500)/10000) #plot orbits up to i
p=plot!(plotData[3][1:33:end]./1.5e11,plotData[4][1:33:end]./1.5e11,label="",linecolor=colors[2],linewidth=2,linealpha=max.((1:33:(length(t))) .+ 10000 .- (length(t)),2500)/10000) #linealpha argument causes lines to decay
p=plot!(plotData[5][1:33:end]./1.5e11,plotData[6][1:33:end]./1.5e11,label="",linecolor=colors[3],linewidth=2,linealpha=max.((1:33:(length(t))) .+ 10000 .- (length(t)),2500)/10000) #example: alpha=max.((1:i) .+ 100 .- i,0) causes only last 100 to be visible
p=scatter!(starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
star1=makeCircleVals(rad[1],[plotData[1][end],plotData[2][end]]) #generate circles with appropriate sizes for each star
star2=makeCircleVals(rad[2],[plotData[3][end],plotData[4][end]]) #at current positions
star3=makeCircleVals(rad[3],[plotData[5][end],plotData[6][end]])
p=plot!(star1[1]./1.5e11,star1[2]./1.5e11,label="$(@sprintf("%.1f", m[1]./2e30))",color=colors[1],fill=true) #plot star circles with labels
p=plot!(star2[1]./1.5e11,star2[2]./1.5e11,label="$(@sprintf("%.1f", m[2]./2e30))",color=colors[2],fill=true)
p=plot!(star3[1]./1.5e11,star3[2]./1.5e11,label="$(@sprintf("%.1f", m[3]./2e30))",color=colors[3],fill=true)
p=plot!(background_color=:black,background_color_legend=:transparent,foreground_color_legend=:transparent,
background_color_outside=:white,aspect_ratio=:equal,legendtitlefontcolor=:white,legendfontfamily="Courier") #formatting for plot frame
p=plot!(xlabel="x: AU",ylabel="y: AU",title="Random Three-Body Problem\nt: $(@sprintf("%0.2f",t[end]/365/24/3600)) years after start",
legend=:best,xaxis=("x: AU",(limx[1],limx[2]),font(9,"Courier")),yaxis=("y: AU",(limy[1],limy[2]),font(9,"Courier")),
grid=false,titlefont=font(14,"Courier"),size=(720,721),legendfontsize=8,legendtitle="Mass (in solar masses)",legendtitlefontsize=8,legendtitlefont="Courier") #add in axes/title/legend with formatting
#collision cam zoom in
i1,i2=collisionInds #these are the ones that are colliding, we use them to set the frame limits
X=[plotData[1][end],plotData[3][end],plotData[5][end]]./1.5e11; Y=[plotData[2][end],plotData[4][end],plotData[6][end]]./1.5e11
minX=(min(X[i1],X[i2])-1); maxX=(max(X[i1],X[i2])); minY=(min(Y[i1],Y[i2])-1); maxY=(max(Y[i1],Y[i2]))
dx=maxX-minX; dy=maxY-minY
dF=dx<dy ? dy : dx #use dy for frame if dx smaller, else dx
p=plot!(title="COLLISION CAM\n(slo-mo x 33)",titlefontcolor=:orange,inset=(1,bbox(1/8,1/8,0.25,0.25)),
xlims=(minX,minX+dF+1),ylims=(minY,minY+dF+1),legend=:false,left_margin=0mm,right_margin=0mm,top_margin=0mm,bottom_margin=0mm,
foreground_color_border=:white,foreground_color_axis=:white,foreground_color_text=:white,grid=:false,
aspect_ratio=:equal,fontfamily=:Courier,subplot=2,framestyle=:box,titlefontsize=10,tickfontsize=6)
p=plot!(p[2],plotData[1][1:10:end]./1.5e11,plotData[2][1:10:end]./1.5e11,label="",linecolor=colors[1],linewidth=2,linealpha=max.((1:10:(length(t))) .+ 10000 .- (length(t)),2500)/10000)
p=plot!(p[2],plotData[3][1:10:end]./1.5e11,plotData[4][1:10:end]./1.5e11,label="",linecolor=colors[2],linewidth=2,linealpha=max.((1:10:(length(t))) .+ 10000 .- (length(t)),2500)/10000)
p=plot!(p[2],plotData[5][1:10:end]./1.5e11,plotData[6][1:10:end]./1.5e11,label="",linecolor=colors[3],linewidth=2,linealpha=max.((1:10:(length(t))) .+ 10000 .- (length(t)),2500)/10000)
p=plot!(p[2],star1[1]./1.5e11,star1[2]./1.5e11,color=colors[1],fill=true)
p=plot!(p[2],star2[1]./1.5e11,star2[2]./1.5e11,color=colors[2],fill=true)
p=plot!(p[2],star3[1]./1.5e11,star3[2]./1.5e11,color=colors[3],fill=true)
p=scatter!(p[2],starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
#draw zoom box
cornersX=[minX,minX+dF+1]; cornersY=[minY,minY+dF+1]
p=plot!([cornersX[1],cornersX[2]],[cornersY[1],cornersY[1]],c=:white,label="") #side 1
p=plot!([cornersX[2],cornersX[2]],[cornersY[1],cornersY[2]],c=:white,label="") #side 2
p=plot!([cornersX[1],cornersX[2]],[cornersY[2],cornersY[2]],c=:white,label="") #side 3
p=plot!([cornersX[1],cornersX[1]],[cornersY[1],cornersY[2]],c=:white,label="") #side 4
offset = 0.013 #for some reason the x corners don't quite match...
s1x,s1y = relative(p[1],1/8-offset,7/8-0.25); s2x,s2y = relative(p[1],1/8+0.25-offset,7/8)
subCornersX=[s1x,s2x]; subCornersY=[s1y,s2y] #physical coordinates, box in top left
p=plot!([subCornersX[1],cornersX[1]],[subCornersY[1],cornersY[1]],c=:white,label = "") #corner 1 -> corner 1
p=plot!([subCornersX[2],cornersX[2]],[subCornersY[2],cornersY[2]],c=:white,label = "") #corner 2 -> corner 2
p=plot!([subCornersX[1],cornersX[1]],[subCornersY[2],cornersY[2]],c=:white,label = "") #corner 3 -> corner 3
p=plot!([subCornersX[2],cornersX[2]],[subCornersY[1],cornersY[1]],c=:white,label = "") #corner 4 -> corner 4
#save frame
png(p,@sprintf("tmpPlots/frame_%06d.png",frameNum))
frameNum+=1
closeall() #close plots
end
end
end
#this is a function that will generate the animation for you without having to use the command line, works on Linux, untested elsewhere
function makeAnim(clean=true)
run(`ffmpeg -framerate 30 -i "tmpPlots/frame_%06d.png" -c:v libx264 -preset slow -coder 1 -movflags +faststart -g 15 -crf 18 -pix_fmt yuv420p -profile:v high -y -bf 2 -vf "scale=720:720,setdar=1/1" "threeBodyDev.mp4"`)
if clean==true
println("cleaning up png files")
foreach(rm,[string("tmpPlots/",x) for x in filter(endswith(".png"),readdir("tmpPlots"))])
end
end
#main()
#makeAnim() #commented out because I compile the frames in the shell script
#threeBodyFile="3Body_fps30.mp4"
#crf is compression value (17 or 18 "visually lossless"), pix_fmt is for twitter specific vid req, -b:v specifies target bitrate, -vcodec specifies codec (h264 in this case) -y says overwrite existing file
#run( `ffmpeg -framerate 30 -i $plotLoadPath"%06d.png" -vcodec libx264 -pix_fmt yuv420p -profile:v high -b:v 2048K -y -vf "scale=720:720,setdar=1/1" $threeBodyFile` ) #-vf scale=720:72 -crf 25
#run( `ffmpeg -framerate 30 -i $plotLoadPath"%06d.png" -c:v libx264 -preset slow -coder 1 -movflags +faststart -g 15 -crf 18 -pix_fmt yuv420p -profile:v high -y -bf 2 -vf "scale=720:720,setdar=1/1" $threeBodyFile` ) #all this bullshit to hopefully satisfy twitter requirements
#NOTE: moved ffmpeg commands to shell script
#old (simpler) way of generating animation
#uncomment and use this way if you just want a simple animation saved and don't
#care about performance/specific formatting of video.
# threeBodyAnim=@animate for i=1:length(t)
# gr(legendfontcolor = plot_color(:white)) #plot arg broken right now in Julia
# print("$(@sprintf("%.2f",i/length(t)*100)) % complete\r") #output percent tracker
# pos=[plotData[1][i],plotData[2][i],plotData[3][i],plotData[4][i],plotData[5][i],plotData[6][i]] #current pos
# limx,limy,center=getLims(pos./1.5e11,5) #convert to AU, 5 AU padding
# plot(plotData[1][1:i]./1.5e11,plotData[2][1:i]./1.5e11,label="",linecolor=colors[1])
# plot!(plotData[3][1:i]./1.5e11,plotData[4][1:i]./1.5e11,label="",linecolor=colors[2])
# plot!(plotData[5][1:i]./1.5e11,plotData[6][1:i]./1.5e11,label="",linecolor=colors[3])
# scatter!(starsX,starsY,markercolor=:white,markersize=:1,label="") #fake background stars
# star1=makeCircleVals(rad[1],[plotData[1][i],plotData[2][i]])
# star2=makeCircleVals(rad[2],[plotData[3][i],plotData[4][i]])
# star3=makeCircleVals(rad[3],[plotData[5][i],plotData[6][i]])
# plot!(star1[1]./1.5e11,star1[2]./1.5e11,label="$(@sprintf("%.1f", m[1]./2e30))",color=colors[1],fill=true)
# plot!(star2[1]./1.5e11,star2[2]./1.5e11,label="$(@sprintf("%.1f", m[2]./2e30))",color=colors[2],fill=true)
# plot!(star3[1]./1.5e11,star3[2]./1.5e11,label="$(@sprintf("%.1f", m[3]./2e30))",color=colors[3],fill=true)
# plot!(background_color=:black,background_color_legend=:transparent,background_color_outside=:white,aspect_ratio=:equal,legendtitlefontcolor=:white) #legendfontcolor=:white
# plot!(xlabel="x: AU",ylabel="y: AU",title="Random Three Body Problem\nt: $(@sprintf("%0.2f",t[i]/365/24/3600)) yrs after start",
# legend=:best,xaxis=("x: AU",(limx[1],limx[2]),font(12,"Courier")),yaxis=("y: AU",(limy[1],limy[2]),font(12,"Courier")),
# grid=false,titlefont=font(24,"Courier"),size=(720,720),legendfontsize=12,legendtitle="Mass (in solar masses)",legendtitlefontsize=14)
# end every 25
#mp4(threeBodyAnim,"3Body_fps30.mp4",fps=30)
#OR
#gif(threeBodyAnim,"3Body_fps30.gif",fps=30)