-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf1.sh
349 lines (338 loc) · 16 KB
/
f1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
####################################################################################################
# RSTN: Recurrent Saliency Transformation Network for organ segmentation framework #
# This is PyTorch 0.4.0 Python 3.6 verison of OrganSegRSTN in CAFFE Python 2.7 . #
# Author: Tianwei Ni, Huangjie Zheng, Lingxi Xie. #
# #
# If you use our codes, please cite our paper accordingly: #
# Qihang Yu, Lingxi Xie, Yan Wang, Yuyin Zhou, Elliot K. Fishman, Alan L. Yuille, #
# "Recurrent Saliency Transformation Network: #
# Incorporating Multi-Stage Visual Cues for Small Organ Segmentation", #
# in IEEE Conference on Computer Vision and Pattern Recognition, 2018. #
# #
# NOTE: this program can be used for multi-organ segmentation. #
# Please also refer to its previous version, OrganSegC2F. #
####################################################################################################
####################################################################################################
# variables for conveniencer
CURRENT_ORGAN_ID=1
CURRENT_PLANE=A
CURRENT_FOLD=1
CURRENT_GPU=0
####################################################################################################
# turn on these switches to execute each module
ENABLE_INITIALIZATION=0
ENABLE_TRAINING=1
ENABLE_COARSE_TESTING=1
ENABLE_COARSE_FUSION=1
ENABLE_ORACLE_TESTING=1
ENABLE_ORACLE_FUSION=1
ENABLE_COARSE2FINE_TESTING=1
# training settings: X|Y|Z
TRAINING_ORGAN_ID=$CURRENT_ORGAN_ID
TRAINING_PLANE=$CURRENT_PLANE
TRAINING_GPU=$CURRENT_GPU
# coarse_testing settings: X|Y|Z, before this, coarse-scaled models shall be ready
COARSE_TESTING_ORGAN_ID=$CURRENT_ORGAN_ID
COARSE_TESTING_PLANE=$CURRENT_PLANE
COARSE_TESTING_GPU=$CURRENT_GPU
# coarse_fusion settings: before this, coarse-scaled results on 3 views shall be ready
COARSE_FUSION_ORGAN_ID=$CURRENT_ORGAN_ID
# oracle_testing settings: X|Y|Z, before this, fine-scaled models shall be ready
ORACLE_TESTING_ORGAN_ID=$CURRENT_ORGAN_ID
ORACLE_TESTING_PLANE=$CURRENT_PLANE
ORACLE_TESTING_GPU=$CURRENT_GPU
# oracle_fusion settings: before this, fine-scaled results on 3 views shall be ready
ORACLE_FUSION_ORGAN_ID=$CURRENT_ORGAN_ID
# fine_testing settings: before this, both coarse-scaled and fine-scaled models shall be ready
COARSE2FINE_TESTING_ORGAN_ID=$CURRENT_ORGAN_ID
COARSE2FINE_TESTING_GPU=$CURRENT_GPU
####################################################################################################
# defining the root path which stores image and label data
DATA_PATH='/home/datasets/Pancreas82NIH/'
####################################################################################################
# data initialization: only needs to be run once
# variables
ORGAN_NUMBER=1
FOLDS=4
LOW_RANGE=-100
HIGH_RANGE=240
# init.py : data_path, organ_number, folds, low_range, high_range
if [ "$ENABLE_INITIALIZATION" = "1" ]
then
python init.py \
$DATA_PATH $ORGAN_NUMBER $FOLDS $LOW_RANGE $HIGH_RANGE
fi
####################################################################################################
# the individual and joint training processes
# variables
SLICE_THRESHOLD=0.98
SLICE_THICKNESS=3
LEARNING_RATE1=1e-5
LEARNING_RATE2=1e-5
LEARNING_RATE_M1=10
LEARNING_RATE_M2=10
TRAINING_MARGIN=20
TRAINING_PROB=0.5
TRAINING_SAMPLE_BATCH=1
TRAINING_EPOCH_S=6
TRAINING_EPOCH_I=6
TRAINING_EPOCH_J=6
LR_DECAY_EPOCH_J_STEP=2
if [ "$ENABLE_TRAINING" = "1" ]
then
TRAINING_TIMESTAMP=$(date +'%Y%m%d_%H%M%S')
else
TRAINING_TIMESTAMP='20220221_210935'
fi
# training.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, plane, GPU_ID,
# learning_rate1, learning_rate2 (not used), margin, prob, sample_batch,
# step, ·max_iterations1, max_iterations2 (not used), fraction, timestamp
if [ "$ENABLE_TRAINING" = "1" ]
then
if [ "$TRAINING_PLANE" = "X" ] || [ "$TRAINING_PLANE" = "A" ]
then
TRAINING_MODELNAME=X${SLICE_THICKNESS}_${TRAINING_ORGAN_ID}
TRAINING_LOG=${DATA_PATH}logs/FD${CURRENT_FOLD}:${TRAINING_MODELNAME}_${TRAINING_TIMESTAMP}.txt
python training.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$TRAINING_ORGAN_ID X $TRAINING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$TRAINING_EPOCH_S $TRAINING_EPOCH_I $TRAINING_EPOCH_J \
$LR_DECAY_EPOCH_J_STEP $TRAINING_TIMESTAMP 1 2>&1 | tee $TRAINING_LOG
fi
if [ "$TRAINING_PLANE" = "Y" ] || [ "$TRAINING_PLANE" = "A" ]
then
TRAINING_MODELNAME=Y${SLICE_THICKNESS}_${TRAINING_ORGAN_ID}
TRAINING_LOG=${DATA_PATH}logs/FD${CURRENT_FOLD}:${TRAINING_MODELNAME}_${TRAINING_TIMESTAMP}.txt
python training.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$TRAINING_ORGAN_ID Y $TRAINING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$TRAINING_EPOCH_S $TRAINING_EPOCH_I $TRAINING_EPOCH_J \
$LR_DECAY_EPOCH_J_STEP $TRAINING_TIMESTAMP 1 2>&1 | tee $TRAINING_LOG
fi
if [ "$TRAINING_PLANE" = "Z" ] || [ "$TRAINING_PLANE" = "A" ]
then
TRAINING_MODELNAME=Z${SLICE_THICKNESS}_${TRAINING_ORGAN_ID}
TRAINING_LOG=${DATA_PATH}logs/FD${CURRENT_FOLD}:${TRAINING_MODELNAME}_${TRAINING_TIMESTAMP}.txt
python training.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$TRAINING_ORGAN_ID Z $TRAINING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$TRAINING_EPOCH_S $TRAINING_EPOCH_I $TRAINING_EPOCH_J \
$LR_DECAY_EPOCH_J_STEP $TRAINING_TIMESTAMP 1 2>&1 | tee $TRAINING_LOG
fi
fi
####################################################################################################
# the coarse-scaled testing processes
# variables
COARSE_TESTING_EPOCH_S=$TRAINING_EPOCH_S
COARSE_TESTING_EPOCH_I=$TRAINING_EPOCH_I
COARSE_TESTING_EPOCH_J=$TRAINING_EPOCH_J
COARSE_TESTING_EPOCH_STEP=$LR_DECAY_EPOCH_J_STEP
COARSE_TIMESTAMP1=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP2=$TRAINING_TIMESTAMP
# coarse_testing.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, plane, GPU_ID,
# learning_rate1, learning_rate2, margin, prob, sample_batch,
# EPOCH_S, EPOCH_I, EPOCH_J, EPOCH_STEP,
# timestamp1, timestamp2 (optional)
if [ "$ENABLE_COARSE_TESTING" = "1" ]
then
if [ "$COARSE_TESTING_PLANE" = "X" ] || [ "$COARSE_TESTING_PLANE" = "A" ]
then
python coarse_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$COARSE_TESTING_ORGAN_ID X $COARSE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$COARSE_TESTING_EPOCH_S $COARSE_TESTING_EPOCH_I \
$COARSE_TESTING_EPOCH_J $COARSE_TESTING_EPOCH_STEP \
$COARSE_TIMESTAMP1 $COARSE_TIMESTAMP2
fi
if [ "$COARSE_TESTING_PLANE" = "Y" ] || [ "$COARSE_TESTING_PLANE" = "A" ]
then
python coarse_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$COARSE_TESTING_ORGAN_ID Y $COARSE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$COARSE_TESTING_EPOCH_S $COARSE_TESTING_EPOCH_I \
$COARSE_TESTING_EPOCH_J $COARSE_TESTING_EPOCH_STEP \
$COARSE_TIMESTAMP1 $COARSE_TIMESTAMP2
fi
if [ "$COARSE_TESTING_PLANE" = "Z" ] || [ "$COARSE_TESTING_PLANE" = "A" ]
then
python coarse_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$COARSE_TESTING_ORGAN_ID Z $COARSE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$COARSE_TESTING_EPOCH_S $COARSE_TESTING_EPOCH_I \
$COARSE_TESTING_EPOCH_J $COARSE_TESTING_EPOCH_STEP \
$COARSE_TIMESTAMP1 $COARSE_TIMESTAMP2
fi
fi
####################################################################################################
# the coarse-scaled fusion process
# variables
COARSE_FUSION_EPOCH_S=$TRAINING_EPOCH_S
COARSE_FUSION_EPOCH_I=$TRAINING_EPOCH_I
COARSE_FUSION_EPOCH_J=$TRAINING_EPOCH_J
COARSE_FUSION_EPOCH_STEP=$LR_DECAY_EPOCH_J_STEP
COARSE_FUSION_THRESHOLD=0.5
COARSE_TIMESTAMP1_X=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP1_Y=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP1_Z=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP2_X=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP2_Y=$TRAINING_TIMESTAMP
COARSE_TIMESTAMP2_Z=$TRAINING_TIMESTAMP
# coarse_fusion.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, plane, GPU_ID,
# learning_rate1, learning_rate_m1, learning_rate2, learning_rate_m2, margin,
# EPOCH_S, EPOCH_I, EPOCH_J, EPOCH_STEP, threshold,
# timestamp1_X, timestamp1_Y, timestamp1_Z,
# timestamp2_X (optional), timestamp2_Y (optional), timestamp2_Z (optional)
if [ "$ENABLE_COARSE_FUSION" = "1" ]
then
python coarse_fusion.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS $COARSE_TESTING_ORGAN_ID $COARSE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 $TRAINING_MARGIN \
$COARSE_FUSION_EPOCH_S $COARSE_FUSION_EPOCH_I $COARSE_FUSION_EPOCH_J \
$COARSE_FUSION_EPOCH_STEP $COARSE_FUSION_THRESHOLD \
$COARSE_TIMESTAMP1_X $COARSE_TIMESTAMP1_Y $COARSE_TIMESTAMP1_Z \
$COARSE_TIMESTAMP2_X $COARSE_TIMESTAMP2_Y $COARSE_TIMESTAMP2_Z
fi
####################################################################################################
# the oracle testing processes
# variables
ORACLE_TESTING_EPOCH_S=$TRAINING_EPOCH_S
ORACLE_TESTING_EPOCH_I=$TRAINING_EPOCH_I
ORACLE_TESTING_EPOCH_J=$TRAINING_EPOCH_J
ORACLE_TESTING_EPOCH_STEP=$LR_DECAY_EPOCH_J_STEP
ORACLE_TIMESTAMP1=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP2=$TRAINING_TIMESTAMP
# oracle_testing.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, plane, GPU_ID,
# learning_rate1, learning_rate_m1, learning_rate2, learning_rate_m2,
# margin, prob, sample_batch,
# EPOCH_S, EPOCH_I, EPOCH_J, EPOCH_STEP,
# timestamp1, timestamp2 (optional)
if [ "$ENABLE_ORACLE_TESTING" = "1" ]
then
if [ "$ORACLE_TESTING_PLANE" = "X" ] || [ "$ORACLE_TESTING_PLANE" = "A" ]
then
python oracle_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$ORACLE_TESTING_ORGAN_ID X $ORACLE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$ORACLE_TESTING_EPOCH_S $ORACLE_TESTING_EPOCH_I \
$ORACLE_TESTING_EPOCH_J $ORACLE_TESTING_EPOCH_STEP \
$ORACLE_TIMESTAMP1 $ORACLE_TIMESTAMP2
fi
if [ "$ORACLE_TESTING_PLANE" = "Y" ] || [ "$ORACLE_TESTING_PLANE" = "A" ]
then
python oracle_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$ORACLE_TESTING_ORGAN_ID Y $ORACLE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$ORACLE_TESTING_EPOCH_S $ORACLE_TESTING_EPOCH_I \
$ORACLE_TESTING_EPOCH_J $ORACLE_TESTING_EPOCH_STEP \
$ORACLE_TIMESTAMP1 $ORACLE_TIMESTAMP2
fi
if [ "$ORACLE_TESTING_PLANE" = "Z" ] || [ "$ORACLE_TESTING_PLANE" = "A" ]
then
python oracle_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS \
$ORACLE_TESTING_ORGAN_ID Z $ORACLE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 \
$TRAINING_MARGIN $TRAINING_PROB $TRAINING_SAMPLE_BATCH \
$ORACLE_TESTING_EPOCH_S $ORACLE_TESTING_EPOCH_I \
$ORACLE_TESTING_EPOCH_J $ORACLE_TESTING_EPOCH_STEP \
$ORACLE_TIMESTAMP1 $ORACLE_TIMESTAMP2
fi
fi
####################################################################################################
# the oracle-scaled fusion process
# variables
ORACLE_FUSION_EPOCH_S=$TRAINING_EPOCH_S
ORACLE_FUSION_EPOCH_I=$TRAINING_EPOCH_I
ORACLE_FUSION_EPOCH_J=$TRAINING_EPOCH_J
ORACLE_FUSION_EPOCH_STEP=$LR_DECAY_EPOCH_J_STEP
ORACLE_FUSION_THRESHOLD=0.5
ORACLE_TIMESTAMP1_X=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP1_Y=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP1_Z=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP2_X=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP2_Y=$TRAINING_TIMESTAMP
ORACLE_TIMESTAMP2_Z=$TRAINING_TIMESTAMP
# oracle_fusion.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, plane, GPU_ID,
# learning_rate1, learning_rate_m1, learning_rate2, learning_rate_m2, margin,
# EPOCH_S, EPOCH_I, EPOCH_J, EPOCH_STEP, threshold,
# timestamp1_X, timestamp1_Y, timestamp1_Z,
# timestamp2_X (optional), timestamp2_Y (optional), timestamp2_Z (optional)
if [ "$ENABLE_ORACLE_FUSION" = "1" ]
then
python oracle_fusion.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS $ORACLE_TESTING_ORGAN_ID $ORACLE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 $TRAINING_MARGIN \
$ORACLE_FUSION_EPOCH_S $ORACLE_FUSION_EPOCH_I $ORACLE_FUSION_EPOCH_J \
$ORACLE_FUSION_EPOCH_STEP $ORACLE_FUSION_THRESHOLD \
$ORACLE_TIMESTAMP1_X $ORACLE_TIMESTAMP1_Y $ORACLE_TIMESTAMP1_Z \
$ORACLE_TIMESTAMP2_X $ORACLE_TIMESTAMP2_Y $ORACLE_TIMESTAMP2_Z
fi
####################################################################################################
# the coarse-to-fine testing process
# variables
FINE_TESTING_EPOCH_S=$TRAINING_EPOCH_S
FINE_TESTING_EPOCH_I=$TRAINING_EPOCH_I
FINE_TESTING_EPOCH_J=$TRAINING_EPOCH_J
FINE_TESTING_EPOCH_STEP=$LR_DECAY_EPOCH_J_STEP
FINE_FUSION_THRESHOLD=0.5
COARSE2FINE_TIMESTAMP1_X=$TRAINING_TIMESTAMP
COARSE2FINE_TIMESTAMP1_Y=$TRAINING_TIMESTAMP
COARSE2FINE_TIMESTAMP1_Z=$TRAINING_TIMESTAMP
COARSE2FINE_TIMESTAMP2_X=$TRAINING_TIMESTAMP
COARSE2FINE_TIMESTAMP2_Y=$TRAINING_TIMESTAMP
COARSE2FINE_TIMESTAMP2_Z=$TRAINING_TIMESTAMP
MAX_ROUNDS=10
# coarse2fine_testing.py : data_path, current_fold, organ_number, low_range, high_range,
# slice_threshold, slice_thickness, organ_ID, GPU_ID,
# learning_rate1, learning_rate_m1, learning_rate2, learning_rate_m2, margin,
# coarse_fusion_starting_iterations, coarse_fusion_step, coarse_fusion_max_iterations,
# coarse_fusion_threshold, coarse_fusion_code,
# EPOCH_S, EPOCH_I, EPOCH_J, EPOCH_STEP,
# fine_fusion_threshold, max_rounds,
# timestamp1_X, timestamp1_Y, timestamp1_Z,
# timestamp2_X (optional), timestamp2_Y (optional), timestamp2_Z (optional)
if [ "$ENABLE_COARSE2FINE_TESTING" = "1" ]
then
python coarse2fine_testing.py \
$DATA_PATH $CURRENT_FOLD $ORGAN_NUMBER $LOW_RANGE $HIGH_RANGE \
$SLICE_THRESHOLD $SLICE_THICKNESS $COARSE2FINE_TESTING_ORGAN_ID $COARSE2FINE_TESTING_GPU \
$LEARNING_RATE1 $LEARNING_RATE_M1 $LEARNING_RATE2 $LEARNING_RATE_M2 $TRAINING_MARGIN \
$FINE_TESTING_EPOCH_S $FINE_TESTING_EPOCH_I $FINE_TESTING_EPOCH_J $FINE_TESTING_EPOCH_STEP \
$COARSE_FUSION_THRESHOLD $FINE_FUSION_THRESHOLD $MAX_ROUNDS \
$COARSE2FINE_TIMESTAMP1_X $COARSE2FINE_TIMESTAMP1_Y $COARSE2FINE_TIMESTAMP1_Z \
$COARSE2FINE_TIMESTAMP2_X $COARSE2FINE_TIMESTAMP2_Y $COARSE2FINE_TIMESTAMP2_Z \
| tee ./logs/FD${CURRENT_FOLD}_test_${TRAINING_TIMESTAMP}.txt
fi
####################################################################################################