-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess_mesh.py
62 lines (54 loc) · 2.58 KB
/
preprocess_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import trimesh
from einops import rearrange, reduce
import numpy as np
from pysdf import SDF
from tqdm import tqdm
import os
def get_opts():
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, default='meshes/bunny.ply',
help='path to the object to reconstruct')
parser.add_argument('--N', type=int, default=1024,
help='resolution (N^3) of the mesh, same for xyz')
parser.add_argument('--M', type=int, default=1,
help='''number of samples inside each cell to predict
gt occupancy value. Larger value yields more precise result.
Must be a ODD CUBIC number (M=1, with larger T is also fine).
''')
parser.add_argument('--T', type=int, default=1,
help='''For complex mesh (typically non-watertight),
infer sdf multiple times and take the average.
Must be a ODD number (around 5~9 is enough).
''')
return parser.parse_args()
if __name__ == '__main__':
args = get_opts()
N, M, T = args.N, args.M, args.T
assert M%2 == 1, 'M must be an odd cubic number!!'
assert T%2 == 1, 'T must be an odd number!!'
cbrtM = int(M**(1/3))
o = trimesh.load(args.path, force='mesh', skip_materials=True)
bbox = np.amax(o.vertices, 0)-np.amin(o.vertices, 0)
mesh_whl = bbox/2
o.vertices -= np.amax(o.vertices, 0)-mesh_whl # center the mesh
mesh_whl *= 1.02 # give some margin
xs = np.linspace(-mesh_whl[0], mesh_whl[0], cbrtM*N)
ys = np.linspace(-mesh_whl[1], mesh_whl[1], cbrtM*N)
zs = np.linspace(-mesh_whl[2], mesh_whl[2], cbrtM*N)
occ = np.zeros((N, N, N, 1), np.float32)
print('computing occupancy values ...')
for t in tqdm(range(T)):
f = SDF(o.vertices, o.faces) # the sdf is different each time...
for i, z in enumerate(tqdm(zs[::cbrtM])):
xyz_ = np.stack(np.meshgrid(xs, ys, zs[i*cbrtM:(i+1)*cbrtM]), -1).reshape(-1, 3)
occ_ = f.contains(xyz_).reshape(cbrtM*N, cbrtM*N, cbrtM)
occ_ = rearrange(occ_, '(h a) (w b) c -> (a b c) h w',
a=cbrtM, b=cbrtM, c=cbrtM, h=N, w=N).mean(0)
occ[:, :, i, 0] += occ_.astype(np.float32)
occ = (occ>T/2).astype(bool)
os.makedirs('occupancies', exist_ok=True)
base = os.path.basename(args.path)
save_path = f'occupancies/{os.path.splitext(base)[0]}_{N}.npy'
np.save(save_path, np.packbits(occ))
print(f'occupancy saved to {save_path} !')