-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsection07_morphism_class.lean
222 lines (193 loc) · 8.41 KB
/
section07_morphism_class.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
-- Boilerplate:
import algebra.algebra.equiv
import algebra.big_operators.basic
import algebra.ring.equiv
namespace examples
open_locale big_operators
/-
The `is_ring_hom` predicate stated `f} preserves the ring operations `*`, `+`, `1` and `0`.
Instances were available for the common operations, except composition:
-/
-- Adapted from `deprecated/group.lean:86`
class is_monoid_hom {M N : Type*} [monoid M] [monoid N] (f : M → N) : Prop :=
(map_mul : ∀ x y : M, f (x * y) = f x * f y)
(map_one : f 1 = 1)
-- Adapted from `deprecated/ring.lean:70`
class is_ring_hom {R S : Type*} [semiring R] [semiring S] (f : R → S)
extends is_monoid_hom f : Prop :=
(map_add : ∀ x y : R, f (x + y) = f x + f y)
(map_zero : f 0 = 0)
-- Adapted from `deprecated/ring.lean:99`
instance id.is_ring_hom (R : Type*) [semiring R] :
is_ring_hom (id : R → R) :=
{ map_mul := λ _ _, rfl,
map_one := rfl,
map_add := λ _ _, rfl,
map_zero := rfl }
-- Adapted from `deprecated/ring.lean:103`
lemma comp.is_ring_hom {R S T : Type*} (f : R → S) (g : S → T)
[semiring R] [semiring S] [semiring T] [hf : is_ring_hom f] [hg : is_ring_hom g] :
is_ring_hom (g ∘ f) :=
{ map_add := λ x y, by simp [hf.map_add]; rw hg.map_add; refl,
map_mul := λ x y, by simp [hf.map_mul]; rw hg.map_mul; refl,
map_one := by simp [hf.map_one]; exact hg.map_one,
map_zero := by simp [hf.map_zero]; exact hg.map_zero }
/-!--------------
Bundled morphisms
----------------/
namespace bundled
/-
For these reasons, \mathlib was refactored to prefer bundled morphisms:
-/
-- Adapted from `algebra/hom/group.lean:285`
structure monoid_hom (M N : Type*) [monoid M] [monoid N] :=
(to_fun : M → N)
(map_mul : ∀ x y, to_fun (x * y) = to_fun x * to_fun y)
(map_one : to_fun 1 = 1)
-- Adapted from `algebra/hom/ring.lean:257`
structure ring_hom (R S : Type*) [semiring R] [semiring S]
extends monoid_hom R S :=
{map_add : ∀ x y, to_fun (x + y) = to_fun x + to_fun y}
(map_zero : to_fun 0 = 0)
-- Adapted from `algebra/hom/group.lean:474`
instance monoid_hom.has_coe_to_fun (M N : Type*) [monoid M] [monoid N] :
has_coe_to_fun (monoid_hom M N) (λ _, M → N) :=
{ coe := monoid_hom.to_fun }
-- Adapted from `algebra/hom/group.lean:783`
def monoid_hom.id (M : Type*) [monoid M] : monoid_hom M M :=
{ to_fun := id,
map_one := rfl,
map_mul := λ _ _, rfl }
-- Adapted from `algebra/hom/group.lean:810`
def monoid_hom.comp {M N O : Type*} [monoid M] [monoid N] [monoid O]
(f : monoid_hom M N) (g : monoid_hom N O) : monoid_hom M O :=
{ to_fun := g ∘ f,
map_one := by simp [coe_fn, has_coe_to_fun.coe, monoid_hom.has_coe_to_fun, monoid_hom.map_one],
map_mul := by simp [coe_fn, has_coe_to_fun.coe, monoid_hom.has_coe_to_fun, monoid_hom.map_mul] }
/-
[T]he additive group endomorphism of a ring given by multiplying by a constant \lstinline{c}:
-/
-- Adapted from `deprecated/group.lean:80`
class is_add_monoid_hom {M N : Type*} [add_monoid M] [add_monoid N] (f : M → N) : Prop :=
(map_add : ∀ x y : M, f (x + y) = f x + f y)
(map_zero : f 0 = 0)
-- Adapted from `deprecated/group.lean:179`
instance mul.is_add_monoid_hom {R : Type*} [ring R] (c : R) :
is_add_monoid_hom ((*) c) :=
{ map_zero := mul_zero c,
map_add := mul_add c }
-- Adapted from `algebra/ring/basic.lean:54`
def add_monoid_hom.mul_left {R : Type*} [ring R] (c : R) :
add_monoid_hom R R :=
{ to_fun := (*) c,
map_zero' := mul_zero c,
map_add' := mul_add c }
end bundled
#check monoid_hom.map_prod
/-
Thus \mathlib ended up with many copies of lemmas such as `map_prod`:
-/
-- Adapted from `algebra/big_operators/basic.lean:130`
lemma monoid_hom.map_prod {ι M N : Type*} (s : finset ι) (f : ι → M) [comm_monoid M] [comm_monoid N]
(g : monoid_hom M N) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
by simp only [finset.prod_eq_multiset_prod, g.map_multiset_prod, multiset.map_map]
-- Adapted from `algebra/big_operators/basic.lean:172`
lemma ring_hom.map_prod {ι R S : Type*} (s : finset ι) (f : ι → R) [comm_semiring R] [comm_semiring S]
(g : ring_hom R S) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
monoid_hom.map_prod s f g.to_monoid_hom
-- Adapted from `algebra/big_operators/basic.lean:136`
lemma mul_equiv.map_prod {ι M N : Type*} (s : finset ι) (f : ι → M) [comm_monoid M] [comm_monoid N]
(g : mul_equiv M N) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
monoid_hom.map_prod s f g.to_monoid_hom
-- Adapted from `algebra/big_operators/ring_equiv.lean:40`
lemma ring_equiv.map_prod {ι R S : Type*} (s : finset ι) (f : ι → R) [comm_semiring R] [comm_semiring S]
(g : ring_equiv R S) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
monoid_hom.map_prod s f g.to_monoid_hom
-- Adapted from `algebra/algebra/hom.lean:287`
lemma alg_hom.map_prod {ι R A B : Type*} (s : finset ι) (f : ι → A) [comm_semiring R]
[comm_semiring A] [comm_semiring B] [algebra R A] [algebra R B]
(g : alg_hom R A B) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
ring_hom.map_prod s f g.to_ring_hom
-- Adapted from `algebra/algebra/equiv.lean:484`
lemma alg_equiv.map_prod {ι R A B : Type*} (s : finset ι) (f : ι → A) [comm_semiring R]
[comm_semiring A] [comm_semiring B] [algebra R A] [algebra R B]
(g : alg_equiv R A B) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
g.to_alg_hom.map_prod f s
/-!-------------
Morphism classes
---------------/
/-
My first step in introducing this interface was a typeclass `fun_like` for *types* of bundled (dependent) functions,
based on Eric Wieser's `set_like` class for types of bundled subobjects. (https://github.com/leanprover-community/mathlib/pull/6768)
-/
-- Adapted from `library/init/coe.lean:54`
class has_coe_to_fun' (F : Type*) (α : out_param (F → Type*)) :=
(coe : Π x : F, α x)
-- Adapted from `data/fun_like/basic.lean:140`
class fun_like (F : Type*)
(α : out_param Type*) (β : out_param (α → Type*))
extends has_coe_to_fun F (λ _, Π a : α, β a) :=
(coe_injective' : function.injective to_has_coe_to_fun.coe)
-- A typical instance looks like:
instance monoid_hom.fun_like {M N : Type*} [monoid M] [monoid N] :
fun_like (monoid_hom M N) M (λ _, N) :=
{ coe := monoid_hom.to_fun,
coe_injective' := λ f g h, by { cases f, cases g, congr' } }
/-
The next step in addressing the duplication is to introduce a class for
the bundled morphism types that coerce to `monoid_hom`:
-/
-- Adapted from `algebra/hom/group.lean:298`
class monoid_hom_class (F : Type*) (M N : out_param Type*)
[monoid M] [monoid N] extends fun_like F M (λ _, N) :=
(map_one : ∀ (f : F), f 1 = 1)
(map_mul : ∀ (f : F) (x y : M), f (x * y) = f x * f y)
-- Adapted from `algebra/hom/group.lean:303`
instance monoid_hom.monoid_hom_class {M N : Type*} [monoid M] [monoid N] :
monoid_hom_class (monoid_hom M N) M N :=
{ coe := monoid_hom.to_fun,
coe_injective' := λ f g h, by { cases f, cases g, congr' },
map_one := monoid_hom.map_one',
map_mul := monoid_hom.map_mul' }
/-
The types such as \lstinline{ring_hom} extending \lstinline{monoid_hom} should receive a \lstinline{monoid_hom_class} instance,
which we can do by subclassing \lstinline{monoid_hom_class} and instantiating the subclass:
-/
-- Adapted from `algebra_hom_ring.lean:286`
class ring_hom_class (F : Type*) (R S : out_param Type*)
[semiring R] [semiring S]
extends monoid_hom_class F R S :=
(map_zero : ∀ (f : F), f 0 = 0)
(map_add : ∀ (f : F) (x y : R), f (x + y) = f x + f y)
-- Adapted from `algebra/ring/basic.lean:317`
instance ring_hom.ring_hom_class {R S : Type*} [semiring R] [semiring S] :
ring_hom_class (ring_hom R S) R S :=
{ coe := ring_hom.to_fun,
coe_injective' := λ f g h, by { cases f, cases g, congr' },
map_mul := ring_hom.map_mul',
map_one := ring_hom.map_one',
map_add := ring_hom.map_add',
map_zero := ring_hom.map_zero' }
/-
Now lemmas can be made generic by parametrising over all the types of bundled morphisms,
reducing the multiplicative amount of lemmas to an additive amount:
each extension of \lstinline{monoid_hom} should get a \lstinline{monoid_hom_class} instance,
and each operation preserved by \lstinline{monoid_hom}s should get a lemma taking a \lstinline{monoid_hom_class} parameter.
-/
lemma map_prod {ι M N : Type*} (s : finset ι) (f : ι → M) [comm_monoid M] [comm_monoid N]
{G : Type*} [monoid_hom_class G M N] (g : G) :
g (∏ i in s, f i) = ∏ i in s, g (f i) :=
begin
letI := classical.dec_eq ι,
refine finset.induction_on s _ _,
{ simp [monoid_hom_class.map_one] },
{ intros i s hi ih,
simp [finset.prod_insert hi, monoid_hom_class.map_mul, ih] },
end
end examples