-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathbam2bcf.c
353 lines (333 loc) · 10.7 KB
/
bam2bcf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#include <math.h>
#include <stdint.h>
#include "bam.h"
#include "kstring.h"
#include "bam2bcf.h"
#include "errmod.h"
#include "bcftools/bcf.h"
extern void ks_introsort_uint32_t(size_t n, uint32_t a[]);
#define CALL_ETA 0.03f
#define CALL_MAX 256
#define CALL_DEFTHETA 0.83f
#define DEF_MAPQ 20
#define CAP_DIST 25
bcf_callaux_t *bcf_call_init(double theta, int min_baseQ)
{
bcf_callaux_t *bca;
if (theta <= 0.) theta = CALL_DEFTHETA;
bca = calloc(1, sizeof(bcf_callaux_t));
bca->capQ = 60;
bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100;
bca->min_baseQ = min_baseQ;
bca->e = errmod_init(1. - theta);
bca->min_frac = 0.002;
bca->min_support = 1;
return bca;
}
void bcf_call_destroy(bcf_callaux_t *bca)
{
if (bca == 0) return;
errmod_destroy(bca->e);
free(bca->bases); free(bca->inscns); free(bca);
}
/* ref_base is the 4-bit representation of the reference base. It is
* negative if we are looking at an indel. */
int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r)
{
static int *var_pos = NULL, nvar_pos = 0;
int i, n, ref4, is_indel, ori_depth = 0;
memset(r, 0, sizeof(bcf_callret1_t));
if (ref_base >= 0) {
ref4 = bam_nt16_nt4_table[ref_base];
is_indel = 0;
} else ref4 = 4, is_indel = 1;
if (_n == 0) return -1;
// enlarge the bases array if necessary
if (bca->max_bases < _n) {
bca->max_bases = _n;
kroundup32(bca->max_bases);
bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases);
}
// fill the bases array
memset(r, 0, sizeof(bcf_callret1_t));
for (i = n = r->n_supp = 0; i < _n; ++i) {
const bam_pileup1_t *p = pl + i;
int q, b, mapQ, baseQ, is_diff, min_dist, seqQ;
// set base
if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue;
++ori_depth;
baseQ = q = is_indel? p->aux&0xff : (int)bam1_qual(p->b)[p->qpos]; // base/indel quality
seqQ = is_indel? (p->aux>>8&0xff) : 99;
if (q < bca->min_baseQ) continue;
if (q > seqQ) q = seqQ;
mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255
mapQ = mapQ < bca->capQ? mapQ : bca->capQ;
if (q > mapQ) q = mapQ;
if (q > 63) q = 63;
if (q < 4) q = 4;
if (!is_indel) {
b = bam1_seqi(bam1_seq(p->b), p->qpos); // base
b = bam_nt16_nt4_table[b? b : ref_base]; // b is the 2-bit base
is_diff = (ref4 < 4 && b == ref4)? 0 : 1;
} else {
b = p->aux>>16&0x3f;
is_diff = (b != 0);
}
if (is_diff) ++r->n_supp;
bca->bases[n++] = q<<5 | (int)bam1_strand(p->b)<<4 | b;
// collect annotations
if (b < 4) r->qsum[b] += q;
++r->anno[0<<2|is_diff<<1|bam1_strand(p->b)];
min_dist = p->b->core.l_qseq - 1 - p->qpos;
if (min_dist > p->qpos) min_dist = p->qpos;
if (min_dist > CAP_DIST) min_dist = CAP_DIST;
r->anno[1<<2|is_diff<<1|0] += baseQ;
r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ;
r->anno[2<<2|is_diff<<1|0] += mapQ;
r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ;
r->anno[3<<2|is_diff<<1|0] += min_dist;
r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist;
}
r->depth = n; r->ori_depth = ori_depth;
// glfgen
errmod_cal(bca->e, n, 5, bca->bases, r->p);
// Calculate the Variant Distance Bias (make it optional?)
if ( nvar_pos < _n ) {
nvar_pos = _n;
var_pos = realloc(var_pos,sizeof(int)*nvar_pos);
}
int alt_dp=0, read_len=0;
for (i=0; i<_n; i++) {
const bam_pileup1_t *p = pl + i;
if ( bam1_seqi(bam1_seq(p->b),p->qpos) == ref_base )
continue;
var_pos[alt_dp] = p->qpos;
if ( (bam1_cigar(p->b)[0]&BAM_CIGAR_MASK)==4 )
var_pos[alt_dp] -= bam1_cigar(p->b)[0]>>BAM_CIGAR_SHIFT;
alt_dp++;
read_len += p->b->core.l_qseq;
}
float mvd=0;
int j;
n=0;
for (i=0; i<alt_dp; i++) {
for (j=0; j<i; j++) {
mvd += abs(var_pos[i] - var_pos[j]);
n++;
}
}
r->mvd[0] = n ? mvd/n : 0;
r->mvd[1] = alt_dp;
r->mvd[2] = alt_dp ? read_len/alt_dp : 0;
return r->depth;
}
void calc_vdb(int n, const bcf_callret1_t *calls, bcf_call_t *call)
{
// Variant distance bias. Samples merged by means of DP-weighted average.
float weight=0, tot_prob=0;
int i;
for (i=0; i<n; i++)
{
int mvd = calls[i].mvd[0];
int dp = calls[i].mvd[1];
int read_len = calls[i].mvd[2];
if ( dp<2 ) continue;
float prob = 0;
if ( dp==2 )
{
// Exact formula
prob = (mvd==0) ? 1.0/read_len : (read_len-mvd)*2.0/read_len/read_len;
}
else if ( dp==3 )
{
// Sin, quite accurate approximation
float mu = read_len/2.9;
prob = mvd>2*mu ? 0 : sin(mvd*3.14/2/mu) / (4*mu/3.14);
}
else
{
// Scaled gaussian curve, crude approximation, but behaves well. Using fixed depth for bigger depths.
if ( dp>5 )
dp = 5;
float sigma2 = (read_len/1.9/(dp+1)) * (read_len/1.9/(dp+1));
float norm = 1.125*sqrt(2*3.14*sigma2);
float mu = read_len/2.9;
if ( mvd < mu )
prob = exp(-(mvd-mu)*(mvd-mu)/2/sigma2)/norm;
else
prob = exp(-(mvd-mu)*(mvd-mu)/3.125/sigma2)/norm;
}
//fprintf(stderr,"dp=%d mvd=%d read_len=%d -> prob=%f\n", dp,mvd,read_len,prob);
tot_prob += prob*dp;
weight += dp;
}
tot_prob = weight ? tot_prob/weight : 1;
//fprintf(stderr,"prob=%f\n", tot_prob);
call->vdb = tot_prob;
}
int bcf_call_combine(int n, const bcf_callret1_t *calls, int ref_base /*4-bit*/, bcf_call_t *call)
{
int ref4, i, j, qsum[4];
int64_t tmp;
if (ref_base >= 0) {
call->ori_ref = ref4 = bam_nt16_nt4_table[ref_base];
if (ref4 > 4) ref4 = 4;
} else call->ori_ref = -1, ref4 = 0;
// calculate qsum
memset(qsum, 0, 4 * sizeof(int));
for (i = 0; i < n; ++i)
for (j = 0; j < 4; ++j)
qsum[j] += calls[i].qsum[j];
for (j = 0; j < 4; ++j) qsum[j] = qsum[j] << 2 | j;
// find the top 2 alleles
for (i = 1; i < 4; ++i) // insertion sort
for (j = i; j > 0 && qsum[j] < qsum[j-1]; --j)
tmp = qsum[j], qsum[j] = qsum[j-1], qsum[j-1] = tmp;
// set the reference allele and alternative allele(s)
for (i = 0; i < 5; ++i) call->a[i] = -1;
call->unseen = -1;
call->a[0] = ref4;
for (i = 3, j = 1; i >= 0; --i) {
if ((qsum[i]&3) != ref4) {
if (qsum[i]>>2 != 0) call->a[j++] = qsum[i]&3;
else break;
}
}
if (ref_base >= 0) { // for SNPs, find the "unseen" base
if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0)
call->unseen = j, call->a[j++] = qsum[i]&3;
call->n_alleles = j;
} else {
call->n_alleles = j;
if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything
}
// set the PL array
if (call->n < n) {
call->n = n;
call->PL = realloc(call->PL, 15 * n);
}
{
int x, g[15], z;
double sum_min = 0.;
x = call->n_alleles * (call->n_alleles + 1) / 2;
// get the possible genotypes
for (i = z = 0; i < call->n_alleles; ++i)
for (j = 0; j <= i; ++j)
g[z++] = call->a[j] * 5 + call->a[i];
for (i = 0; i < n; ++i) {
uint8_t *PL = call->PL + x * i;
const bcf_callret1_t *r = calls + i;
float min = 1e37;
for (j = 0; j < x; ++j)
if (min > r->p[g[j]]) min = r->p[g[j]];
sum_min += min;
for (j = 0; j < x; ++j) {
int y;
y = (int)(r->p[g[j]] - min + .499);
if (y > 255) y = 255;
PL[j] = y;
}
}
// if (ref_base < 0) fprintf(stderr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen);
call->shift = (int)(sum_min + .499);
}
// combine annotations
memset(call->anno, 0, 16 * sizeof(int));
for (i = call->depth = call->ori_depth = 0, tmp = 0; i < n; ++i) {
call->depth += calls[i].depth;
call->ori_depth += calls[i].ori_depth;
for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j];
}
calc_vdb(n, calls, call);
return 0;
}
int bcf_call2bcf(int tid, int pos, bcf_call_t *bc, bcf1_t *b, bcf_callret1_t *bcr, int fmt_flag,
const bcf_callaux_t *bca, const char *ref)
{
extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two);
kstring_t s;
int i, j;
b->n_smpl = bc->n;
b->tid = tid; b->pos = pos; b->qual = 0;
s.s = b->str; s.m = b->m_str; s.l = 0;
kputc('\0', &s);
if (bc->ori_ref < 0) { // an indel
// write REF
kputc(ref[pos], &s);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
kputc('\0', &s);
// write ALT
kputc(ref[pos], &s);
for (i = 1; i < 4; ++i) {
if (bc->a[i] < 0) break;
if (i > 1) {
kputc(',', &s); kputc(ref[pos], &s);
}
if (bca->indel_types[bc->a[i]] < 0) { // deletion
for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j)
kputc(ref[pos+1+j], &s);
} else { // insertion; cannot be a reference unless a bug
char *inscns = &bca->inscns[bc->a[i] * bca->maxins];
for (j = 0; j < bca->indel_types[bc->a[i]]; ++j)
kputc("ACGTN"[(int)inscns[j]], &s);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
}
}
kputc('\0', &s);
} else { // a SNP
kputc("ACGTN"[bc->ori_ref], &s); kputc('\0', &s);
for (i = 1; i < 5; ++i) {
if (bc->a[i] < 0) break;
if (i > 1) kputc(',', &s);
kputc(bc->unseen == i? 'X' : "ACGT"[bc->a[i]], &s);
}
kputc('\0', &s);
}
kputc('\0', &s);
// INFO
if (bc->ori_ref < 0) kputs("INDEL;", &s);
kputs("DP=", &s); kputw(bc->ori_depth, &s); kputs(";I16=", &s);
for (i = 0; i < 16; ++i) {
if (i) kputc(',', &s);
kputw(bc->anno[i], &s);
}
if (bc->vdb != 1)
ksprintf(&s, ";VDB=%.4f", bc->vdb);
kputc('\0', &s);
// FMT
kputs("PL", &s);
if (bcr && fmt_flag) {
if (fmt_flag & B2B_FMT_DP) kputs(":DP", &s);
if (fmt_flag & B2B_FMT_DV) kputs(":DV", &s);
if (fmt_flag & B2B_FMT_SP) kputs(":SP", &s);
}
kputc('\0', &s);
b->m_str = s.m; b->str = s.s; b->l_str = s.l;
bcf_sync(b);
memcpy(b->gi[0].data, bc->PL, b->gi[0].len * bc->n);
if (bcr && fmt_flag) {
uint16_t *dp = (fmt_flag & B2B_FMT_DP)? b->gi[1].data : 0;
uint16_t *dv = (fmt_flag & B2B_FMT_DV)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0)].data : 0;
int32_t *sp = (fmt_flag & B2B_FMT_SP)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0) + ((fmt_flag & B2B_FMT_DV) != 0)].data : 0;
for (i = 0; i < bc->n; ++i) {
bcf_callret1_t *p = bcr + i;
if (dp) dp[i] = p->depth < 0xffff? p->depth : 0xffff;
if (dv) dv[i] = p->n_supp < 0xffff? p->n_supp : 0xffff;
if (sp) {
if (p->anno[0] + p->anno[1] < 2 || p->anno[2] + p->anno[3] < 2
|| p->anno[0] + p->anno[2] < 2 || p->anno[1] + p->anno[3] < 2)
{
sp[i] = 0;
} else {
double left, right, two;
int x;
kt_fisher_exact(p->anno[0], p->anno[1], p->anno[2], p->anno[3], &left, &right, &two);
x = (int)(-4.343 * log(two) + .499);
if (x > 255) x = 255;
sp[i] = x;
}
}
}
}
return 0;
}