-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathbiglm.py
154 lines (127 loc) · 6.14 KB
/
biglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
from torch import nn
import torch.nn.functional as F
from utils import gelu, LayerNorm
from transformer_postln import TransformerLayer, Embedding, LearnedPositionalEmbedding, SelfAttentionMask
# more than 12 layers
#from transformer_preln import TransformerLayer, Embedding, LearnedPositionalEmbedding, SelfAttentionMask
from label_smoothing import LabelSmoothing
class BIGLM(nn.Module):
def __init__(self, local_rank, vocab, embed_dim, ff_embed_dim, num_heads, dropout, layers, smoothing_factor, approx):
super(BIGLM, self).__init__()
self.vocab = vocab
self.embed_dim = embed_dim
self.tok_embed = Embedding(self.vocab.size, embed_dim, self.vocab.padding_idx)
self.pos_embed = LearnedPositionalEmbedding(embed_dim, device=local_rank)
self.layers = nn.ModuleList()
for i in range(layers):
self.layers.append(TransformerLayer(embed_dim, ff_embed_dim, num_heads, dropout))
self.emb_layer_norm = LayerNorm(embed_dim)
self.one_more = nn.Linear(embed_dim, embed_dim)
self.one_more_layer_norm = LayerNorm(embed_dim)
self.out_proj = nn.Linear(embed_dim, self.vocab.size)
self.attn_mask = SelfAttentionMask(device=local_rank)
self.smoothing = LabelSmoothing(local_rank, self.vocab.size, self.vocab.padding_idx, smoothing_factor)
self.dropout = dropout
self.device = local_rank
if approx == "none":
self.approx = None
elif approx == "adaptive":
self.approx = nn.AdaptiveLogSoftmaxWithLoss(self.embed_dim, self.vocab.size, [10000, 20000, 200000])
else:
raise NotImplementedError("%s has not been implemented"%approx)
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.one_more.bias, 0.)
nn.init.normal_(self.one_more.weight, std=0.02)
nn.init.constant_(self.out_proj.bias, 0.)
nn.init.normal_(self.out_proj.weight, std=0.02)
def label_smotthing_loss(self, y_pred, y, y_mask, avg=True):
seq_len, bsz = y.size()
y_pred = torch.log(y_pred.clamp(min=1e-8))
loss = self.smoothing(y_pred.view(seq_len * bsz, -1), y.view(seq_len * bsz, -1))
if avg:
return loss / torch.sum(y_mask)
else:
return loss / bsz
def nll_loss(self, y_pred, y, y_mask, avg=True):
cost = -torch.log(torch.gather(y_pred, 2, y.view(y.size(0), y.size(1), 1)))
cost = cost.view(y.shape)
y_mask = y_mask.view(y.shape)
if avg:
cost = torch.sum(cost * y_mask, 0) / torch.sum(y_mask, 0)
else:
cost = torch.sum(cost * y_mask, 0)
cost = cost.view((y.size(1), -1))
ppl = 2 ** cost
return cost.sum().item(), ppl.sum().item()
def ppl(self, truth, inp, msk):
seq_len, bsz = inp.size()
self_attn_mask = self.attn_mask(seq_len)
x = self.tok_embed(inp) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
padding_mask = torch.eq(truth, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
for layer in self.layers:
x, _ ,_ = layer(x, self_padding_mask=padding_mask, self_attn_mask = self_attn_mask)
x = self.one_more_layer_norm(gelu(self.one_more(x)))
pred = torch.softmax(self.out_proj(x), -1)
_, pred_y = pred.max(-1)
tot_tokens = msk.float().sum().item()
acc = (torch.eq(pred_y, truth).float()*msk).sum().item()
nll, ppl = self.nll_loss(pred, truth, msk)
return acc, nll, ppl, tot_tokens, bsz
def work(self, inp):
seq_len, bsz = inp.size()
self_attn_mask = self.attn_mask(seq_len)
x = self.tok_embed(inp) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
padding_mask = torch.eq(inp, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
for layer in self.layers:
x, _ ,_ = layer(x, self_padding_mask=padding_mask, self_attn_mask = self_attn_mask)
x = self.one_more_layer_norm(gelu(self.one_more(x)))
probs = torch.softmax(self.out_proj(x), -1)
_, pred_y = probs.max(-1)
return probs, pred_y
def work_incremental(self, inp, incremental_state=None):
seq_len, bsz = inp.size()
x = self.tok_embed(inp) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
padding_mask = torch.eq(inp, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
if incremental_state is None:
self_attn_mask = self.attn_mask(seq_len)
incremental_state = {}
else:
x = x[-1, :, :].unsqueeze(0)
self_attn_mask = None
for layer in self.layers:
x, _ ,_ = layer.work_incremental(x, self_padding_mask=padding_mask, self_attn_mask=self_attn_mask, incremental_state=incremental_state)
x = self.one_more_layer_norm(gelu(self.one_more(x)))
probs = torch.softmax(self.out_proj(x), -1)
_, pred_y = probs.max(-1)
return probs, pred_y, incremental_state
def forward(self, truth, inp, msk):
seq_len, bsz = inp.size()
self_attn_mask = self.attn_mask(seq_len)
x = self.tok_embed(inp) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
padding_mask = torch.eq(truth, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
for layer in self.layers:
x, _ ,_ = layer(x, self_padding_mask=padding_mask, self_attn_mask = self_attn_mask)
x = self.one_more_layer_norm(gelu(self.one_more(x)))
pred = torch.softmax(self.out_proj(x), -1)
loss = self.label_smotthing_loss(pred, truth, msk)
_, pred_y = pred.max(-1)
tot_tokens = msk.float().sum().item()
acc = (torch.eq(pred_y, truth).float()*msk).sum().item()
nll, ppl = self.nll_loss(pred, truth, msk)
return (pred_y, truth), loss, acc, nll, ppl, tot_tokens, bsz