-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
198 lines (171 loc) · 7.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# coding=utf-8
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from biglm import BIGLM
from data import Vocab, DataLoader, s2xy
from optim import Optim
import argparse, os
import random
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('--embed_dim', type=int)
parser.add_argument('--ff_embed_dim', type=int)
parser.add_argument('--num_heads', type=int)
parser.add_argument('--layers', type=int)
parser.add_argument('--dropout', type=float)
parser.add_argument('--train_data', type=str)
parser.add_argument('--dev_data', type=str)
parser.add_argument('--vocab', type=str)
parser.add_argument('--min_occur_cnt', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument('--warmup_steps', type=int)
parser.add_argument('--lr', type=float)
parser.add_argument('--smoothing', type=float)
parser.add_argument('--weight_decay', type=float)
parser.add_argument('--max_len', type=int)
parser.add_argument('--min_len', type=int)
parser.add_argument('--print_every', type=int)
parser.add_argument('--save_every', type=int)
parser.add_argument('--start_from', type=str, default=None)
parser.add_argument('--save_dir', type=str)
parser.add_argument('--world_size', type=int)
parser.add_argument('--gpus', type=int)
parser.add_argument('--MASTER_ADDR', type=str)
parser.add_argument('--MASTER_PORT', type=str)
parser.add_argument('--start_rank', type=int)
parser.add_argument('--backend', type=str)
return parser.parse_args()
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def average_gradients(model):
""" Gradient averaging. """
normal = True
size = float(dist.get_world_size())
for param in model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size
else:
normal = False
break
return normal
def eval_epoch(lm_args, model, lm_vocab, local_rank, label):
print("validating...", flush=True)
ds = []
with open(lm_args.dev_data, "r") as f:
for line in f:
line = line.strip()
if line:
ds.append(line)
batch_size = 10
batches = round(len(ds) / batch_size)
idx = 0
avg_nll = 0.
avg_ppl = 0.
count = 0.
while idx < len(ds):
cplb = ds[idx:idx + batch_size]
xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk = s2xy(cplb, lm_vocab, lm_args.max_len, lm_args.min_len)
xs_tpl = xs_tpl.cuda(local_rank)
xs_seg = xs_seg.cuda(local_rank)
xs_pos = xs_pos.cuda(local_rank)
ys_truth = ys_truth.cuda(local_rank)
ys_inp = ys_inp.cuda(local_rank)
ys_tpl = ys_tpl.cuda(local_rank)
ys_seg = ys_seg.cuda(local_rank)
ys_pos = ys_pos.cuda(local_rank)
msk = msk.cuda(local_rank)
nll, ppl, bsz = model.ppl(xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk)
avg_nll += nll
avg_ppl += ppl
count += bsz
idx += batch_size
print(label, "nll=", avg_nll/count, "ppl=", avg_ppl/count, "count=", count, flush=True)
def run(args, local_rank):
""" Distributed Synchronous """
torch.manual_seed(1234)
vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
if (args.world_size == 1 or dist.get_rank() == 0):
print ("vocab.size = " + str(vocab.size), flush=True)
model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
args.num_heads, args.dropout, args.layers, args.smoothing)
if args.start_from is not None:
ckpt = torch.load(args.start_from, map_location='cpu')
model.load_state_dict(ckpt['model'])
model = model.cuda(local_rank)
optimizer = Optim(model.embed_dim, args.lr, args.warmup_steps, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.998), eps=1e-9))
if args.start_from is not None:
optimizer.load_state_dict(ckpt['optimizer'])
train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len, args.min_len)
batch_acm = 0
acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
while True:
model.train()
if train_data.epoch_id > 30:
break
for xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk in train_data:
batch_acm += 1
xs_tpl = xs_tpl.cuda(local_rank)
xs_seg = xs_seg.cuda(local_rank)
xs_pos = xs_pos.cuda(local_rank)
ys_truth = ys_truth.cuda(local_rank)
ys_inp = ys_inp.cuda(local_rank)
ys_tpl = ys_tpl.cuda(local_rank)
ys_seg = ys_seg.cuda(local_rank)
ys_pos = ys_pos.cuda(local_rank)
msk = msk.cuda(local_rank)
model.zero_grad()
res, loss, acc, nll, ppl, ntokens, npairs = model(xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk)
loss_acm += loss.item()
acc_acm += acc
nll_acm += nll
ppl_acm += ppl
ntokens_acm += ntokens
npairs_acm += npairs
nxs += npairs
loss.backward()
if args.world_size > 1:
is_normal = average_gradients(model)
else:
is_normal = True
if is_normal:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
else:
print("gradient: none, gpu: " + str(local_rank), flush=True)
continue
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
%(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
model.eval()
eval_epoch(args, model, vocab, local_rank, "epoch-" + str(train_data.epoch_id) + "-acm-" + str(batch_acm))
model.train()
torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
def init_processes(args, local_rank, fn, backend='nccl'):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = args.MASTER_ADDR
os.environ['MASTER_PORT'] = args.MASTER_PORT
dist.init_process_group(backend, rank=args.start_rank + local_rank, world_size=args.world_size)
fn(args, local_rank)
if __name__ == "__main__":
mp.set_start_method('spawn')
args = parse_config()
if args.world_size == 1:
run(args, 0)
exit(0)
processes = []
for rank in range(args.gpus):
p = mp.Process(target=init_processes, args=(args, rank, run, args.backend))
p.start()
processes.append(p)
for p in processes:
p.join()