-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
239 lines (216 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import math
import time
import logging
from tqdm import tqdm
from datetime import datetime
import numpy as np
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
from torch_geometric.loader import DataLoader
from models.gnn import GNN
from configures.arguments import load_arguments_from_yaml, get_args
from dataset.get_datasets import get_dataset
from utils import AverageMeter, validate, print_info, init_weights, load_generator, ImbalancedSampler
from utils import build_augmentation_dataset
cls_criterion = torch.nn.BCEWithLogitsLoss(reduction='none')
reg_criterion = torch.nn.MSELoss(reduction='none')
def get_logger(name, logfile=None):
""" create a nice logger """
logger = logging.getLogger(name)
# clear handlers if they were created in other runs
if (logger.hasHandlers()):
logger.handlers.clear()
logger.setLevel(logging.DEBUG)
# create formatter
formatter = logging.Formatter('%(asctime)s - %(message)s')
# create console handler add add to logger
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
# create file handler add add to logger when name is not None
if logfile is not None:
fh = logging.FileHandler(logfile)
fh.setFormatter(formatter)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
logger.propagate = False
return logger
def seed_torch(seed=0):
print('Seed', seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def get_cosine_schedule_with_warmup(optimizer,
num_warmup_steps,
num_training_steps,
num_cycles=0.5,
# num_cycles=7./16.,
last_epoch=-1):
def _lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
no_progress = float(current_step - num_warmup_steps) / \
float(max(1, num_training_steps - num_warmup_steps))
return max(1e-2, math.cos(math.pi * num_cycles * no_progress))
return LambdaLR(optimizer, _lr_lambda, last_epoch)
def train(args, model, train_loaders, optimizer, scheduler, epoch):
if args.task_type in 'regression':
criterion = reg_criterion
else:
criterion = cls_criterion
if not args.no_print:
p_bar = tqdm(range(args.steps))
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
device = args.device
model.train()
for batch_idx in range(args.steps):
end = time.time()
model.zero_grad()
try:
batch_labeled = next(train_loaders['labeled_iter'])
except:
train_loaders['labeled_iter'] = iter(train_loaders['labeled_trainloader'])
batch_labeled = next(train_loaders['labeled_iter'])
batch_labeled = batch_labeled.to(device)
targets = batch_labeled.y.to(torch.float32)
is_labeled = targets == targets
if batch_labeled.x.shape[0] == 1 or batch_labeled.batch[-1] == 0:
continue
else:
pred_labeled = model(batch_labeled)[0]
Losses = criterion(pred_labeled.view(targets.size()).to(torch.float32)[is_labeled], targets[is_labeled])
loss = Losses.mean()
loss.backward()
optimizer.step()
scheduler.step()
losses.update(loss.item())
batch_time.update(time.time() - end)
end = time.time()
if not args.no_print:
p_bar.set_description("Train Epoch: {epoch}/{epochs:4}. Iter: {batch:4}/{iter:4}. LR: {lr:.8f}. Data: {data:.3f}s. Batch: {bt:.3f}s. Loss: {loss:.4f}. ".format(
epoch=epoch + 1,
epochs=args.epochs,
batch=batch_idx + 1,
iter=args.steps,
lr=scheduler.get_last_lr()[0],
data=data_time.avg,
bt=batch_time.avg,
loss=losses.avg,
))
p_bar.update()
if not args.no_print:
p_bar.close()
return train_loaders
def main(args):
device = torch.device('cuda', args.gpu_id)
args.n_gpu = torch.cuda.device_count()
args.device = device
labeled_dataset = get_dataset(args, './raw_data')
label_split_idx = labeled_dataset.get_idx_split()
args.num_trained = len(label_split_idx["train"])
args.num_trained_init = args.num_trained
args.task_type = labeled_dataset.task_type
args.steps = args.num_trained // args.batch_size + 1
args.strategy = args.strategy_init
if args.dataset == 'ogbg-molhiv':
sampler = ImbalancedSampler(labeled_dataset, label_split_idx["train"])
labeled_trainloader = DataLoader( labeled_dataset[label_split_idx["train"]], batch_size=args.batch_size, sampler=sampler, num_workers = args.num_workers)
else:
labeled_trainloader = DataLoader(labeled_dataset[label_split_idx["train"]], batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers)
valid_loader = DataLoader(labeled_dataset[label_split_idx["valid"]], batch_size=args.batch_size, shuffle=False,num_workers = args.num_workers)
test_loader = DataLoader(labeled_dataset[label_split_idx["test"]], batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers)
model = GNN(gnn_type = args.model, num_tasks = labeled_dataset.num_tasks, num_layer = args.num_layer, emb_dim = args.emb_dim,
drop_ratio = args.drop_ratio, graph_pooling = args.readout, norm_layer = args.norm_layer).to(device)
generator = load_generator(device, path='checkpoints/qm9_denoise.pth')
init_weights(model, args.initw_name, init_gain=0.02)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay)
scheduler = get_cosine_schedule_with_warmup(optimizer, 0, 100)
logging.warning( f"device: {args.device}, " f"n_gpu: {args.n_gpu}, ")
logger.info(dict(args._get_kwargs()))
logger.info("***** Running training *****")
logger.info(f" Task = {args.dataset}@{args.num_trained}/{len(label_split_idx['valid'])}/{len(label_split_idx['test'])}")
logger.info(f" Num Epochs = {args.epochs}")
logger.info(f" Total train batch size = {args.batch_size}")
logger.info(f" Total optimization steps = {args.epochs * args.steps}")
train_loaders = {'labeled_iter': iter(labeled_trainloader),'labeled_trainloader': labeled_trainloader}
for epoch in range(0, args.epochs):
train_loaders = train(args, model, train_loaders, optimizer, scheduler, epoch)
train_perf = validate(args, model, labeled_trainloader)
valid_perf = validate(args, model, valid_loader)
if epoch >= args.start and epoch % args.iteration == 0:
new_dataset = build_augmentation_dataset(args, model, generator, labeled_dataset)
if args.dataset == 'ogbg-molhiv':
sampler = ImbalancedSampler(new_dataset, new_dataset.get_idx_split()["train"])
new_trainloader = DataLoader(new_dataset, batch_size=args.batch_size, sampler=sampler,num_workers = args.num_workers)
else:
new_trainloader = DataLoader(new_dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers)
train_loaders['labeled_trainloader'] = new_trainloader
args.num_trained = len(new_trainloader.dataset)
args.steps = args.num_trained // args.batch_size + 1
if args.strategy.split('_')[-1] == 'accumulate':
labeled_dataset = new_dataset
if len(new_trainloader.dataset) > args.num_trained_init * 2:
args.strategy = 'replace' + '_' + args.strategy.split('_')[-1]
update_test = False
if epoch != 0 and 'classification' in args.task_type and valid_perf['auc'] > best_valid_perf['auc']:
update_test = True
elif epoch != 0 and 'regression' in args.task_type and valid_perf['mae'] < best_valid_perf['mae']:
update_test = True
if update_test or epoch == 0:
best_valid_perf = valid_perf
best_train_perf = train_perf
cnt_wait = 0
best_epoch = epoch
test_perf = validate(args, model, test_loader)
if not args.no_print:
print_info('Train', train_perf)
print_info('Valid', valid_perf)
print_info('Test', test_perf)
else:
# not update
if not args.no_print:
print_info('Train', train_perf)
print_info('Valid', valid_perf)
if epoch > 30:
cnt_wait += 1
if cnt_wait > args.patience:
break
print('Finished training! Best validation results from epoch {}.'.format(best_epoch))
print_info('train', best_train_perf)
print_info('valid', best_valid_perf)
print_info('test', test_perf)
return best_train_perf, best_valid_perf, test_perf
if __name__ == '__main__':
args = get_args()
config = load_arguments_from_yaml(f'configures/{args.dataset}.yaml')
for arg, value in config.items():
setattr(args, arg, value)
args.strategy_init = args.strategy
datetime_now = datetime.now().strftime("%Y%m%d.%H%M%S")
logger = get_logger(__name__, logfile=None)
print(args)
results = {}
for exp_num in range(args.trails):
seed_torch(exp_num)
args.exp_num = exp_num
train_perf, valid_perf, test_perf = main(args)
exp_result_temp = {'train': train_perf, 'valid': valid_perf, 'test': test_perf}
if exp_num == 0:
for metric in train_perf.keys():
results[f'train_{metric}'] = []
results[f'valid_{metric}'] = []
results[f'test_{metric}'] = []
for name in ['train', 'test', 'valid']:
if args.task_type in 'regression':
metric_list = ['rmse', 'r2','mae','mse']
else:
metric_list = ['auc']
for metric in metric_list:
results[f'{name}_{metric}'].append(exp_result_temp[name][metric])
for mode, nums in results.items():
print('{}: {:.4f}+-{:.4f} {}'.format(mode, np.mean(nums), np.std(nums), nums))