- SPI Protocol Basics
- API Details: Interface information, such as models for conceptual interactions, CSRs and interrupts.
- Command Interface Primary interface for constructing SPI commands.
- Design Details: Further info about the implementation.
- Appendices
SPI is a source-synchronous serial interface, consisting of data lines (SD[x]
), a clock (SCK
), and an active-low chip select (CS#
) per target device.
The host is responsible for generating the serial clock, and typically each side asserts outgoing data on one edge of the clock (e.g. on the rising edge) and samples data in the next edge (e.g. on the falling edge).
The SPI bus can be connected to many target devices, but each device on the bus must get its own chip select, and so this signal designates a particular device for each command.
In this IP we refer to the chip select as CSB
.
Bus traffic is composed of 'commands', each of which is initiated by the host and targets a single device.
The assertion and deassertion of the target device's chip-select mark the beginning and end of each command.
No device will accept any command input until CSB
has been asserted for that device, and most devices (if not all) do not accept a second command unless CSB
has been deasserted to mark the end of the previous command.
Some simple devices, particularly those that support SPI daisy-chaining, do not process command input at all until after the CSB
line has been deasserted.
In the case of NOR flash devices, read and write commands are indeterminate in length, and the data transfer ends only when the CSB
line is deasserted.
So, although the exact details of the operation may vary from device to device, the edges of the CSB
signal always serve as important markers for delineating the boundaries of each transaction.
Typical SPI commands are categorized as Standard, Dual, or Quad depending on the number of serial data lines (SD[x]
) they utilize.
This is often referred to as the 'Speed-Mode' or just 'Speed', although as the clock frequency remains constant this is a slight misnomor, so it may be better thought-of as a 'Throughput-Mode' or just a data width.
A command may be composed of a number of phases or segments, where different numbers of data lines are used in different directions.
The OpenTitan SPI_HOST IP uses the term 'segment' to describe this smaller unit of traffic, and each segment can have it's own data direction and speed-mode.
For example, in a Standard SPI command a number of instruction-, address- or data-bytes are transmitted on SD[0]
, and response bytes are received on SD[1]
.
Therefore, for Standard-mode commands SD[0]
is always configured as an output and SD[1]
is always an input.
In this mode, the bus can be effectively used as a full-duplex communication channel.
Not all devices exploit this capability however, and often will opt instead to have clear input and output phases for each command.
This half-duplex signaling behavior is especially common in devices with also support Dual- and Quad-mode commands, which are always half-duplex.
The SPI_HOST IP optionally supports both full-duplex and half-duplex commands in Standard-mode.
When it comes to devices there is no universal convention on clock polarity (CPOL) or clock phase (CPHA).
Some devices expect the clock line to be low when the host is idle, thus the clock should come as a sequence of positive pulses (CPOL = 0
).
On the other hand, some devices expect CPOL = 1
, meaning that the clock line is inverted: high when idle with sequences of negative pulses.
Devices also differ in their expectations of clock phase (CPHA) relative to the data.
Devices with CPHA = 0
expect that both the host and device will be sampling data on the leading edge, and asserting data on the trailing edge.
(Because of the option for either polarity, the terms "leading" and "trailing" are preferred to "rising" or "falling").
When CPHA = 0
the first output bit is asserted with the falling edge of CSB
.
Conversely, if CPHA = 1
data is always asserted on the leading edge of SCK
and sampled on the trailing edge of SCK
.
As well as supporting any combination of CPOL/CPHA, this IP also offers an additional Full-Cycle sampling option via the (CONFIGOPTS.FULLCYC
) field, which can ease timing pressure for devices which require setup times exceeding half a cycle.
For even faster transfer rates, some flash chips support double transfer rate (DTR) variations to the SPI protocol wherein the device receives and transmits fresh data on both the leading and trailing edge.
This IP only supports single transfer rate (STR), not DTR.
A preliminary investigation of DTR transfer mode suggests that proper support for setup and hold times in this mode may require a level of sub-cycle timing control which is not currently planned for this IP.
Broadly speaking, the SPI_HOST IP accepts commands from the TL-UL interface, and based on these commands, serially transmits and receives data on the external SPI interface pins. The timing and data-line formatting of the command sequence depend on the external peripheral device and the nature of the specific command issued.
The SPI_HOST command interface defines a segment as a compounding bus operation where the IP performs a simpler, repetitive action over a fixed number of bytes. This allows software to specify any number of command segments to build larger, more complex transactions.
The definition of a segment may be better explained with an example. For instance, Dual or Quad-mode commands can be decomposed into four command segments, in which the host:
- Transmits instructions or data at single-line rate,
- Transmits instructions address or data on 2 or 4 data lines,
- Holds the bus in a high-impedance state for some number of "dummy" clock cycles (neither side transmits), or
- Receives information from the target device.
Each of these segments may have a different directionality and speed. As indicated in the example figure below, input data need only be sampled during the last segment. Likewise, software-provided data is only transmitted in the first two segments.
{signal: [
{name: "clk_i", wave: "p................................"},
{name: "SCK (CPOL=0)", wave: "0.101010101010101010101010101010."},
{name: "CSB", wave: "10..............................1"},
{name: "SD[0]", wave: "22.2.2.2.2.2.2.2.2.2.z.....2.2.x.", data: ["","cmd7", "cmd6", "cmd5", "cmd4", "cmd3", "cmd2", "cmd1", "cmd0",
"out4", "out0", "in4", "in0" ]},
{name: "SD[1]", wave: "z................2.2.z.....2.2.x.", data: ["out5", "out1", "in5", "in1"]},
{name: "SD[2]", wave: "z................2.2.z.....2.2.x.", data: ["out6", "out2", "in6", "in2"]},
{name: "SD[3]", wave: "z................2.2.z.....2.2.x.", data: ["out7", "out3", "in7", "in3"]},
{name: "Segment number", wave: "x2...............3...4.....5...x.", data: ['1', '2', '3','4'] },
{name: "Segment speed", wave: "x2...............3...4.....5...x.", data: ['Standard', 'Quad', 'X', 'Quad'] },
{name: "Segment direction", wave: "x2...............3...4.....5...x.", data: ['TX', 'TX', 'None', 'RX'] },
{name: "Sampling event (FULLCYC=0)", wave: "1...........................H.H.."},
{name: "Sampling event (FULLCYC=1)", wave: "1............................H.H."},
],
head: {
text: "Example Quad SPI transaction: 1 byte TX (Single), 1 byte (Quad), 3 dummy cycles and 1 RX byte with CPHA=0"
},
}
A SPI transaction always consists of at least one segment, and the Command Interface will begin to enact a new segment as soon as the previous segment has completed.
(There is a small Command FIFO to allow software to enqueue multiple segments at once.)
The IP will automatically control the chip-select for each segment, by asserting it at the start of a segment and desasserting it at the end.
By setting COMMAND.CSAAT
, the CSB
will not be deasserted at the end of a segment, allowing multiple segments to be composed into a longer continuous command.
Each segment may have a different speed, direction and length, and there is no restriction on the configuration of a segment relative to any other.
For example, a Quad-IO (1-4-4) SPI Read could be constructed from the following 4 segments:
Dir | Width | Len | Desc | CSAAT |
---|---|---|---|---|
Tx | Std | 1 | A single byte instruction | 1 |
Tx | Quad | 3/4 | A three or four byte address | 1 |
Dum | None | x | A number of dummy cycles (no data transmitted or received) | 1 |
Rx | Quad | N | The desired data received from the target device | 0 |
More generally, the process of issuing a SPI command consists of the following steps:
- Configure the IP to be compatible with each attached peripheral.
The
CONFIGOPTS
multi-register holds separate sets of configuration settings, one for eachCSB
line. In principle, the configuration of these device-specific options only needs to be done/performed once at initialization. - Load the TX FIFO with the instructions and data to be transmitted to the remote device by writing to the
TXDATA
memory window. - Specify which device should receive the next command using the
CSID
register. - Wait for
STATUS.READY
before continuing. - Issue speed, direction, and length details for the next command segment using the
COMMAND
register. If a command consists of multiple segments,COMMAND.CSAAT
(Chip-Select Active After Transaction) should be set to one for all segments except the final one. SettingCOMMAND.CSAAT
to zero indicates the end of a transaction, prompting the IP to raiseCSB
at the end of the segment. - Repeat steps 4 and 5 until all segments have been described.
- Read any peripheral response data from the RX FIFO by reading from the
RXDATA
memory window.
Each segment is defined by writing the following fields in the COMMAND
register.
name | size | values |
---|---|---|
DIRECTION | 2 | {Bidir, Tx_Only, Rx_Only, None/Dummy} |
SPEED | 2 | {Std, Dual, Quad} |
CSAAT | 1 | {1, 0} |
LEN | 8 | [0:255] |
The 'Direction' field allows each segment to configure how data should be transmitted/received from the RX and TX Data FIFOs. This allows software to automatically discard data that is irrelevant or invalid before it is captured. By adeptly composing a command of multiple segments with different 'Direction' and 'Speed' fields, the ergonomics of the accompanying software driver can be greatly improved.
For a device using "Standard" SPI commands, each command is very consistent in structure: the host transmits data on SD[0]
, and always receives data on SD[1]
.
For such devices, all segments could in principle be treated as bidirectional, as both the host and device are always transmitting on their respective lines.
For bidirectional segments, the SPI_HOST IP will store one byte in the RX FIFO for each byte transmitted from the TX FIFO.
However, even for these Standard SPI commands, software may be uninterested in some or all of the device's response data.
For example, Standard SPI Write commands to flash devices contain no useful data in the device response, even though the device may be actively asserting signals to SD[1]
throughout the transaction.
Therefore, for such commands software may choose to specify the entire segment as "TX Only", in which case data placed in the TX FIFO will be transmitted throughout the write command, but signals received from the device will be ignored and will not fill the RX FIFO.
For other flash commands such as Standard-mode Read, the device only transmits useful information during some portions of the transaction.
In the case of a basic read (with a 3-byte address), the instruction starts with a 1-byte instruction code (0x3
) followed by the three address bytes, during which time the flash device outputs may be high impedance (depending on the device).
The device then immediately responds with the requested data in the next SCK
cycle, and continues to output data bytes until the CSB
line is deasserted.
Though such a command could also be treated as entirely bidirectional, the device response can be safely ignored during the instruction and address phase, especially if the SD[1]
line is high impedance during this time.
Likewise it is not necessary for software to specify any data to transmit while the device is responding.
Therefore such a command can be thought of as consisting of two separate segments, the first segment being TX Only and the second segment being RX only, as shown in the following figure.
Breaking the command up this way can simplify the job of writing software that is generic over different types of commands.
{signal: [
{name: "clk_i", wave: "p....................|.............."},
{name: "SCK (CPOL=0)", wave: "0.1010101010101010101|01010101010101"},
{name: "CSB", wave: "10...................|.............."},
{name: "SD[0]", wave: "00.0.0.0.0.0.1.1.2.2.|2.2.x.........", data: ["a[23]", "a[22]", "a[1]", "a[0]"]},
{name: "SD[1]", wave: "z....................|....2.2.2.2.2.", data: ["d[7]", "d[6]", "d[5]", "d[4]", "..."]},
{name: "Segment number", wave: "x2...................|....2.........", data: ['1', '2', '3','4'] },
{name: "Segment speed", wave: "x2...................|....2.........", data: ['Standard', 'Standard'] },
{name: "Segment direction", wave: "x2...................|....2.........", data: ['TX', 'RX', 'None', 'RX'] },
],
foot: {text: "Standard SPI example: Flash Read command with 24-bit address, consisting of one TX and one RX segment"}
}
In addition to the TX, RX or Bidirectional modes, some SPI commands require periods where neither the host or device are transmitting data. For instance, many flash devices define a Fast Read command in which the host must insert a number of "dummy clocks" between the last address byte and the first data byte from the device. These extra cycles are required for operation at higher clock frequencies, to give the device time to decode the address and fetch the corresponding data. A Standard-mode Fast Read (with 3 byte addressing) command then requires three SPI_HOST command segments:
- 4 bytes TX Only: one for the instruction code (i.e., 0xb for Fast Read), and three for the address.
- 8 dummy clocks
- N bytes RX Only for read data response
{signal: [
{name: "clk_i", wave: "p....................|.............................."},
{name: "SCK (CPOL=0)", wave: "0.1010101010101010101|010101010101010101010101010101"},
{name: "CSB", wave: "10...................|.............................."},
{name: "SD[0]", wave: "00.0.0.0.1.0.1.1.2.2.|2.2.x.........................", data: ["a[23]", "a[22]", "a[1]", "a[0]"]},
{name: "SD[1]", wave: "z....................|....z.z.z.z.z.z.z.z.2.2.2.2.2.", data: ["d[7]", "d[6]", "d[5]", "d[4]", "..."]},
{name: "Segment number", wave: "x3...................|....4...............5.........", data: ['1', '2', '3'] },
{name: "Segment speed", wave: "x3...................|....4...............5.........", data: ['Standard', 'X', 'Standard'] },
{name: "Segment direction", wave: "x3...................|....4...............5.........", data: ['TX', 'Dummy', 'RX'] },
],
foot: {text: "Standard SPI example: Fast read command (instruction code 0xb) with 24-bit address, consisting of three segments, one TX, 8 dummy clocks and one RX segment"}
}
For Standard-mode commands, segments simplify the IO process by identifying which bus cycles have useful RX or TX data.
In such cases it is not strictly necessary to the manage the impedance of the SD[0]
and SD[1]
lines.
For Dual- and Quad-mode commands however, impedance control is necessary, as the impedance of all data lines (SD[3:0]
) must switch between TX and RX segments.
(Bidirectional data transfers are not applicable for Dual- or Quad-mode segments).
In addition, the speed-mode changes how data is distributed across the four data lines, and many commands require that some segments are transmitted in Standard-mode (only on SD[0]
), while the bulk of the data is transmitted in Dual- or Quad-mode.
For this reason the speed-mode is also adjustable on a segment-by-segment basis.
The CSID
register is used to identify the target device for the next command segment.
Whenever a command segment descriptor is written to COMMAND
, CSID
is passed into the FSM along with the command segment descriptor and the corresponding configurations options (taken from the CSID'th element of the CONFIGOPTS
multi-register).
This register still exists when instantiated with only one CSB
line (i.e. when NumCS=1).
However in this case the CSID
value is ignored.
Changes in CSID
also affect the CSB
lines, because a change in CSID can also implicitly end a command, overriding COMMAND.CSAAT
.
If a change is detected in CSID
, but the previous segment was submitted with the CSAAT
bit asserted, the FSM terminates the previous command before moving on to the next segment.
The previous CSB
line is held low for at least CSNTRAIL
cycles (as defined by the previous value of CONFIGOPTS.CSNTRAIL
) and then brought high.
All CSB
lines are held high for CSNIDLE
cycles (using the new value of CONFIGOPTS.CSNIDLE
).
The new CSB
line is asserted low, and SCK
begins toggling after the usual CSNLEAD
cycle delay.
Before starting a command, some common configuration for the target device must be setup.
Each target device attached to a chip-select can have an independent set of configuration parameters to match it's specific needs.
When starting a command, the value of CSID
is used to select the correct set of configuration parameters.
The CONFIGOPTS
multi-register contains seperate configuration entries for each chip select.
Each entry holds clock configuration and timing settings which are specific to each peripheral.
Once the CONFIGOPTS
multi-register has been programmed for each SPI peripheral device, the values can be left unchanged.
The following sections give details on how the SPI_HOST IP can be used to control a specific peripheral.
For simplicity, this section describes how to interact one device, attached to CSB[0]
, and as such references are made to the multi-registers CONFIGOPTS
and COMMAND
.
To configure timing and send commands to devices on other CSB
lines, instead use the CONFIGOPTS
multi-register corresponding to desired CSB
line.
The SPI clock rate for each peripheral is set by two factors:
- The SPI_HOST input clock
- A 16-bit clock divider (
CONFIGOPTS.CLKDIV
)
The SPI protocol usually requires activity (either sampling or asserting data) on either edge of the SCK
clock.
For this reason the maximum SCK
frequency is at most one half the SPI_HOST core frequency.
Since some peripheral devices attached to the same SPI_HOST IP may require different clock frequencies, there is also the option to divide the core clock by an additional factor when dealing with slower peripherals.
This is configured per-peripheral by setting the field CONFIGOPTS.CLKDIV
.
Typically the CSB
line is automatically deasserted after the last edge of SCK
.
However, by asserting COMMAND.CSAAT
when issuing a particular command, one can instruct the core to hold CSB
low indefinitely after the last clock edge.
This is useful for merging two adjacent command segments together, to create more complex commands, such as flash Quad read commands which require a mix of segments with different speeds and directions.
The CSB
line can then be deasserted by either issuing another command without the COMMAND.CSAAT
field, issuing a command to a different device (after changing the CSID
register), or simply resetting the core FSM via the CONTROL.SW_RST
register.
To avoid spurious clock signals, changes to the CONFIGOPTS
parameters take effect only at the end of a command segment and only when all CSB
lines are deasserted.
There are two cases to consider:
- Configuration changes detected and
CSAAT=0
for the previous segment: This is when configuration changes are typically expected, and in this case, the SPI_HOST IP waits for the previous segment to complete before moving changing the configuration. The SPI_HOST ensures that allCSB
lines are held idle long enough to satisfy the configuration requirements both before and after the change. - CSAAT = 1 for the previous segment:
Configuration changes are not typically expected after CSAAT segments, and require special treatment as the IP does not usually return the
CSB
lines to the idle/inactive state at this time. In such cases, the SPI_HOST IP closes out the ongoing transaction, ignoring CSAAT, and the configuration is then applied once the SPI_HOST has returned to the idle state. The next segment can then proceed, even though the remote device will likely see the next segment as the start of a new transaction (as opposed to a continuation of the previous transaction), because of the brief intervening idle pulse.
Most devices require at least one-half SCK
clock-cycle between either edge of CSB
and the nearest SCK
edge.
However, some devices may require more timing margin and so the SPI_HOST core offers some configuration registers for controlling the timing of the CSB
edges when operating under automatic control.
The relevant parameters are as follows:
- TIDLE: The minimum time between each rising edge of
CSB
and the following falling edge. This time delay is a halfSCK
cycle by default but can be extended to as long as eightSCK
cycles by setting theCONFIGOPTS.CSNIDLE
register. - TLEAD: The minimum time between each falling edge of
CSB
and the first leading edge ofSCK
. This time delay is a halfSCK
cycle by default but can be extended to as long as eightSCK
cycles by setting theCONFIGOPTS.CSNLEAD
register. - TTRAIL: The minimum time between the last trailing edge of
SCK
and the following rising edge ofCSB
. This time delay is a halfSCK
cycle by default but can be extended to as long as eightSCK
cycles by setting theCONFIGOPTS.CSNTRAIL
register.
{signal: [
{name: "SCK", wave: "l....1010|10........"},
{name: "CSB", wave: "10.......|.....1...0", node: ".A...B.....C...D...E"}
],
edge: ["A<->B minimum (CSNLEAD+1)", "C<->D minimum (CSNTRAIL+1)", "D<->E minimum (CSNIDLE+1)"],
head: {
text: "Impact of CSNLEAD, CSNTRAIL and CSNIDLE CONFIGOPTS register settings",
tick: 1
},
foot: {
text: ["tspan", "All ticks are in units of ½T",
["tspan", {'baseline-shift':'sub'}, "SCK"],
"=½T",
["tspan", {'baseline-shift':'sub'}, "clk"],
"×(CLKDIV+1)"]
}
}
These settings are all minimum bounds, and delays in the FSM implementation may create more margin in each of these timing constraints.
The most common differences between target devices are the requirements for a specific SPI clock polarity and phase, CPOL and CPHA, which were described in the previous section SPI Protocol Basics.
These clock parameters can be set via the CONFIGOPTS.CPOL
or CONFIGOPTS.CPHA
register fields.
When operating at the fastest-rated clock speeds, some flash devices (i.e. both the Winbond and Micron devices noted on the summary page) require setup times which exceed half a clock-cycle.
In order to support these fastest data rates, the SPI_HOST IP offers a modified "Full-cycle" (CONFIGOPTS.FULLCYC
) timing mode where data can be sampled a full cycle after the target device asserts data on the SD bus.
This full cycle mode has no effect on any of the signals transmitted, only on the timing of the sampling of the incoming signals.
{signal: [
{name: "clk_i", wave: "p.................."},
{name: "SCK (CPOL=0)", wave: "0.1010101010101010."},
{name: "SCK (CPOL=1)", wave: "1.0101010101010101."},
{name: "CSB", wave: "10................1"},
["CPHA = 0",
{name: "SD[0] (output)", wave: "22.2.2.2.2.2.2.2...", data: ["","out7", "out6", "out5", "out4", "out3", "out2", "out1", "out0" ]},
{name: "SD[1] (input)", wave: "22.2.2.2.2.2.2.2.2.", data: ["","in7", "in6", "in5", "in4", "in3", "in2", "in1", "in0",""]},
{name: "Sampling event (FULLCYC=0)", wave: "1.H.H.H.H.H.H.H.H.."},
{name: "Sampling event (FULLCYC=1)", wave: "1..H.H.H.H.H.H.H.H."},
],
["CPHA = 1",
{name: "SD[0] (output)", wave: "2.2.2.2.2.2.2.2.2..", data: ["","out7", "out6", "out5", "out4", "out3", "out2", "out1", "out0" ]},
{name: "SD[1] (input)", wave: "2.2.2.2.2.2.2.2.2.2", data: ["","in7", "in6", "in5", "in4", "in3", "in2", "in1", "in0",""]},
{name: "Sampling event (FULLCYC=0)", wave: "1..H.H.H.H.H.H.H.H."},
{name: "Sampling event (FULLCYC=1)", wave: "1...H.H.H.H.H.H.H.H"},
],
],
head: {
text: "Standard SPI transaction (1 byte), illustrating of the impact of the CPOL, CPHA, and FULLCYC settings"
},
foot: {
}
}
It is important that the configuration changes are applied while CSB
is high to avoid sending spurious SCK
events to any devices.
For example, if two devices have different requirements for CPOL
, the clock polarity should not toggle except when CSB
is high (inactive) for all devices.
Furthermore, CSB
should be remain high for the minimum idle time both before and after the configuration update.
For example, consider a SPI_HOST attached to two devices each with different requirements for the clock divider, clock polarity, and idle time.
Consider a configuration where total idle time (as determined by the CONFIGOPTS.CLKDIV
and CONFIGOPTS.CSNIDLE
multi-registers) works out to 9 idle clocks for the first device, and 4 clocks for the second device.
In this scenario then, when swapping from the first device to the second, the SPI_HOST IP will only swap the clock polarity once the first CSB
line, CSB[0]
, has been high for at least 9 clocks, and will continue to hold the second csb
line, csb[1]
, high for 4 additional clocks before starting the next transaction.
{signal: [
{name: 'clk', wave: 'p..............'},
["Requested Config",
{name: 'Configuration ID', wave: '3.4............', data: ["CSID=0", "CSID=1"]},
{name: 'CPOL', wave: '2.2............', data: ["0", "1"]},
{name: 'CLKDIV', wave: '2.2............', data: ["2", "1"]},
{name: 'CSNIDLE', wave: '2.2............', data: ["2", "1"]},
{name: 'Min. Idle cycles', wave: '2.2............', data: ["9", "4"]},
],
["Active Config",
{name: 'Configuration ID', wave: '3.........4....', data: ["CSID=0", "CSID=1"]},
{name: 'CPOL', wave: '2.........2....', data: ["0", "1"]},
{name: 'CLKDIV', wave: '2.........2....', data: ["2", "1"]},
{name: 'CSNIDLE', wave: '2.........2....', data: ["2", "1"]},
{name: 'Min. Idle cycles', wave: '2.........2....', data: ["9", "4"]},
],
{name: 'csb[0]', wave: '01.............',
node: '.A........B....'},
{name: 'csb[1]', wave: '1.............0',
node: '..........C...D'},
{name: 'configuration update event', wave: '1.........H....'}
],
edge: ["A<->B min. 9 cycles", "C<->D min. 4 cycles"],
head: {text: "Extended Idle Time During Configuration Changes", tock: 1}
}
This additional idle time applies not only when switching between devices but when making any changes to the configuration for most recently used device.
For instance, even in a SPI_HOST configured for one device, changes to CONFIGOPTS
, will trigger this extended idle time behavior to ensure that the change in configuration only occurs in the middle of a long idle period.
The COMMAND
register must be written once for each command segment.
Whenever a command segment is written to COMMAND
, the contents of the CONFIGOPTS
, CSID
, and COMMAND
registers are passed through the Config/Command FIFO to the SPI_HOST core FSM.
Once the command is issued, the core will immediately deassert STATUS.READY
, and once the command has started STATUS.ACTIVE
will go high.
The command is complete when STATUS.ACTIVE
goes low.
A spi_event
interrupt can also be triggered to go off on completion by setting EVENT_ENABLE.IDLE
.
Each instance of the SPI_HOST IP supports a parametrizable number of chip select lines (CSB[NumCS-1:0]
).
Each CSB
line can be routed either to a single peripheral or to a daisy-chain of peripherals.
Whenever a segment description is written to the COMMAND
register, the CSID
is sent along with COMMAND
and the CONFIGOPTS
multi-register corresponding to CSID
to indicate which device is meant to receive the command.
The SPI_HOST core typically then manages the details of asserting and deasserting the proper CSB
line, subject to the timing parameters expressed in CONFIGOPTS.CSNLEAD
, CONFIGOPTS.CSNTRAIL
, and CONFIGOPTS.CSNIDLE
.
If Pass-through mode is enabled then the CSB
lines are controlled by neither the SPI_HOST hardware nor the firmware register.
In Pass-though mode, control of the CSB
lines passes directly to the inter-module port, passthrough_i.csb
.
The command interface can allows for any number of segments in a given command.
Since most SPI Flash transactions typically consist of 3 or 4 segments, there is a small command FIFO for submitting segments to the SPI_HOST IP, so that firmware can issue the entire transaction at one time.
Writing a segment description to COMMAND
when STATUS.READY
is low will trigger an error condition, which must be acknowledged by software.
When submitting multiple segments to the command queue, firmware can also check the STATUS.CMDQD
register to determine how many unprocessed segments are in the FIFO.
The SPI transactions must be issued with correct bit ordering to properly communicate with a remote device. Based on the requirements for our chosen flash devices, this IP follows these conventions:
- The relative significance of lines on the SD bus:
SD[0]
is always the least significant, followed bySD[1]
thoughSD[3]
with increasing significance. - The relative significance of a sequence of bits on the same SD bus: more significant bits are always transmitted before (or at the same time as) less significant bits.
- For instance, when transferring a single byte in Quad-mode, all four bits of the upper nibble (bits 7 through 3) are transferred in the first clock cycle and the entire lower nibble (bits 3 through 0) is transferred in the second cycle.
The programming model for the IP should meanwhile make it easy to quickly program the peripheral device, with a minimum amount of byte shuffling. It should be intuitive to program the specific flash devices we are targeting, while following the conventions above:
- When transferring data in from the
RXDATA
memory window or out to theTXDATA
window, the IP should fully utilize the TL-UL bus, using 32-bit I/O instructions. - The SPI_HOST IP should make it easy to arrange transaction data in processor memory, meaning that bytes should be sequentially transmitted in order of ascending memory address.
- When using 32-bit I/O instructions, this requires some knowledge of the processor byte-order.
Based on these requirements, data read from RXDATA
or placed in TXDATA
are handled as follows:
- 32-bit words placed in
TXDATA
are transmitted in first-in-first-out order. Likewise, words received from the SPI data lines are made available for reading fromRXDATA
in first-in-first-out order. - Within a 32-bit word, the
ByteOrder
parameter controls the order in which bytes are transmitted, and also the manner in which received bytes are eventually arranged in the 32-bitRXDATA
register. By default (ByteOrder = 1
, for Little-Endian processors), the LSB ofTXDATA
(i.e bits 7 though 0) is transmitted first, and the other bytes follow in order of increasing significance. Similarly, the first byte received is packed into the LSB ofRXDATA
, and the subsequent bytes of eachRXDATA
word are packed in order of increasing significance.
On the other hand, if ByteOrder
is set to 0 (for Big-Endian processors), the MSB is transmitted first from TXDATA
, and received data is loaded first into the MSB of RXDATA
.
- The default choice of Little-Endian reflects native byte-order of the Ibex processor.
- Finally within a given byte, the most significant bits are transmitted and received first.
For Dual and Quad transactions the least significant bit in any instantaneous pair or nibble is transmitted or received on
SD[0]
, and the remaining SD bits (1 though 3) are populated in order of increasing significance.
The following figure shows how data appears on the serial data bus when the hardware reads it from TXDATA
or writes it to RXDATA
.
{signal: [
["ByteOrder=0",
{name: "SD[0] (host output)", wave: "x22222222222|2222|222|22x", data: ["t[31]", "t[30]", "t[29]", "t[28]", "t[27]", "t[26]", "t[25]", "t[24]", "t[23]","t[22]",
"t[21]","t[17]","t[16]","t[15]","t[14]","t[8]", "t[7]", "t[6]", "t[1]", "t[0]"]},
{name: "SD[1] (host input)", wave: "x22222222222|2222|222|22x", data: ["r[31]", "r[30]", "r[29]", "r[28]", "r[27]", "r[26]", "r[25]", "r[24]", "r[23]","r[22]",
"r[21]","r[17]","r[16]","r[15]","r[14]","r[8]", "r[7]", "r[6]", "r[1]", "r[0]"]},
{name: "Which byte?", wave: "x4.......4..|..4.|.4.|..x", data: ["DATA MSB", "","", " LSB"]}
],
["ByteOrder=1",
{name: "SD[0] (host output)", wave: "x22222222222|2222|222|22x", data: ["t[7]", "t[6]", "t[5]", "t[4]", "t[3]", "t[2]", "t[1]", "t[0]", "t[15]","t[14]",
"t[13]","t[9]","t[8]","t[23]","t[22]","t[16]", "t[31]", "t[30]", "t[25]", "t[24]"]},
{name: "SD[1] (host input)", wave: "x22222222222|2222|222|22x", data: ["r[7]", "r[6]", "r[5]", "r[4]", "r[3]", "r[2]", "r[1]", "r[0]", "r[15]","r[14]",
"r[13]","r[9]","r[8]","r[23]","r[22]","r[16]", "r[31]", "r[30]", "r[25]", "r[24]"]},
{name: "Which byte?", wave: "x5.......5..|..5.|.5.|..x", data: ["DATA LSB", "","", " MSB"]}
],
],
head: {
text: "Serial bit ordering for 32-bit data words written to DATA (t[31:0]) or read from DATA (r[31:0]) as a Function of the Parameter 'ByteOrder'",
},
foot: {
text: "Standard SPI, bidirectional segment. Bits are numbered as they appear in the DATA memory window"
}
}
As shown in the following figure, a similar time-ordering scheme applies for Dual- and Quad-mode transfers. However many bits of similar significance are packed into multiple parallel SD data lines, with the least significant going to SD[0].
{signal: [
["ByteOrder=0",
{name: "SD[0]", wave: "x...22334455x...", data: ["d[28]", "d[24]", "d[20]", "d[16]", "d[12]", "d[8]", "d[4]", "d[0]"]},
{name: "SD[1]", wave: "x...22334455x...", data: ["d[29]", "d[25]", "d[21]", "d[17]", "d[13]", "d[9]", "d[5]", "d[1]"]},
{name: "SD[2]", wave: "x...22334455x...", data: ["d[30]", "d[26]", "d[22]", "d[18]", "d[14]", "d[10]", "d[6]", "d[2]"]},
{name: "SD[3]", wave: "x...22334455x...", data: ["d[31]", "d[27]", "d[23]", "d[19]", "d[15]", "d[11]", "d[7]", "d[3]"]},
],
["ByteOrder=1",
{name: "SD[0]", wave: "x...55443322x...", data: ["d[4]", "d[0]", "d[12]", "d[8]", "d[20]", "d[16]", "d[28]", "d[24]"]},
{name: "SD[1]", wave: "x...55443322x...", data: ["d[5]", "d[1]", "d[13]", "d[9]", "d[21]", "d[17]", "d[29]", "d[25]"]},
{name: "SD[2]", wave: "x...55443322x...", data: ["d[6]", "d[2]", "d[14]", "d[10]", "d[22]", "d[18]", "d[30]", "d[26]"]},
{name: "SD[3]", wave: "x...55443322x...", data: ["d[7]", "d[3]", "d[15]", "d[11]", "d[23]", "d[19]", "d[31]", "d[27]"]},
],
],
head: {
text: "Serial bit ordering for 32-bit data word (d[31:0]), Quad SPI as a Function of the Parameter 'ByteOrder'",
},
foot: {
text: "(Bits are numbered as they appear when loaded into DATA memory window)"
}
}
Even though the TXDATA
memory window typically accepts 32-bit words, command segments do not need to use all the bytes from every word.
For TX (or Bidirectional) segments, unused bytes from the latest TX FIFO word are simply ignored at the end of a segment. For RX (or Bidirectional) segments, if the last few bytes received do not fill an entire DATA word, the partial word will be zero-padded and inserted into the RX FIFO once the segment is completed. If ByteOrder=1 (the default, Little-Endian case), this padding will fill the unused most-significant bytes of the final RX DATA word, otherwise the padding will fill the unused least-significant bytes.
The following waveform illustrates an example SPI transaction, where neither the data transmitted nor the data received in each segment fit into an even number of 32-bit words.
In this example, the values I[31:0]
, A[31:0]
and B[31:0]
, have been previously written into TXDATA
via firmware, and afterwards one word, X[31:0]
, is available for reading from RXDATA
.
All data in the waveform is transferred using 32-bit instructions.
{signal: [
{name: "Segment number", wave: "x2.......2.........2.2.x", data: "1 2 3 4"},
{name: "Speed", wave: "x2.......2.........2.2.x", data: "Standard Quad X Quad"},
{name: "Direction", wave: "x2.......2.........2.2.x", data: "TX TX Dummy RX"},
{name: "Length", wave: "x2.......2.........2.2.x", data: "1 5 2 1"},
["ByteOrder=0",
{name: "SD[0]", wave: "x222222222233445522z.22x", data: ["I[31]", "I[30]", "I[29]", "I[28]", "I[27]", "I[26]", "I[25]", "I[24]",
"A[28]", "A[24]", "A[20]", "A[16]", "A[12]", "A[8]", "A[4]", "A[0]", "B[28]", "B[24]", "X[28]", "X[24]"]},
{name: "SD[1]", wave: "xz.......2233445522z.22x", data: ["A[29]", "A[25]", "A[21]", "A[17]", "A[13]", "A[9]", "A[5]", "B[1]", "B[29]", "B[25]", "X[29]", "X[25]"]},
{name: "SD[2]", wave: "xz.......2233445522z.22x", data: ["A[30]", "A[26]", "A[22]", "A[18]", "A[14]", "A[10]", "A[6]", "B[2]", "B[30]", "B[26]", "X[30]", "X[26]"]},
{name: "SD[3]", wave: "xz.......2233445522z.22x", data: ["A[31]", "A[27]", "A[23]", "A[19]", "A[15]", "A[11]", "A[7]", "B[3]", "B[31]", "B[27]", "X[31]", "X[27]"]},
],
{name:""},
["ByteOrder=1",
{name: "SD[0]", wave: "x555555555544332255z.55x", data: ["I[7]", "I[6]", "I[5]", "I[4]", "I[3]", "I[2]", "I[1]", "I[0]",
"A[4]", "A[0]", "A[8]", "A[12]", "A[20]", "A[16]", "A[24]", "A[28]", "B[4]", "B[0]", "X[4]", "X[0]"]},
{name: "SD[1]", wave: "xz.......5544332255z.55x", data: ["A[5]", "A[1]", "A[9]", "A[13]", "A[21]", "A[17]", "A[25]", "A[29]", "B[5]", "B[1]", "X[5]", "X[1]"]},
{name: "SD[2]", wave: "xz.......5544332255z.55x", data: ["A[6]", "A[2]", "A[10]", "A[14]", "A[22]", "A[18]", "A[26]", "A[30]", "B[6]", "B[2]", "X[6]", "X[2]"]},
{name: "SD[3]", wave: "xz.......5544332255z.55x", data: ["A[7]", "A[3]", "A[11]", "A[15]", "A[23]", "A[19]", "A[27]", "A[31]", "B[7]", "B[3]", "X[7]", "X[3]"]},
],
],
head: {
text: "Serial bit ordering for 6 bytes transmitted from FIFO words 'I[31:0], A[31:0]' and 'B[31:0]', and 1 byte received into word 'X[31:0]'",
},
foot: {
text: "Command consists of 4 segments, all TX data is written to DATA using 32-bit memory instructions (all bytes enabled)"
}
}
When packing data into the TX FIFO, there are also no restrictions on the alignment of the data written to the TXDATA
memory window, as it supports byte-enable signals.
This means that when copying bytes into TXDATA
from unaligned firmware memory addresses, it is possible to use byte or half-word instructions.
Full-word instructions should however be used whenever possible, because each write consumes a full word of data in the TX FIFO regardless of the instruction size.
Smaller writes will thus make inefficient use of the TX FIFO.
Filtering out disabled bytes consumes clock cycles in the data pipeline, and can create bubbles in the transmission of SPI_DATA. In the worst case, such bubbles can also be interpreted as transient underflow conditions in the TX FIFO, and could trigger spurious interrupts. The longest delays occur whenever a word is loaded into the TX FIFO with only one byte enabled.
When writing to the TXDATA
window, only three types of data are expected: individual bytes, half-words, and full-words.
Other types of write transactions (i.e., non-contiguous, zero-byte and three-byte writes) are not supported by most processors.
Therefore it is assumed that if such transactions do appear, it is likely a sign of a system integrity error, and so these other classes of writes are not supported.
If such transactions ever occur, they trigger an "Invalid Access" error event, which suspends the processing of future commands until the error has been cleared by setting the ERROR_STATUS.ACCESSINVAL
bit.
The RX FIFO has no special provisions for packing received data in any unaligned fashion.
Depending on the ByteOrder
parameter, the first byte received is always packed into either the most- or least-significant byte read from the RXDATA
memory window.
The SPI_HOST IP also supports a special "Pass-through" mode, which allows for the direct control of the serial interface by another block (namely SPI_DEVICE).
This feature is entirely controlled by intermodule signals passthrough_i
and passthrough_o
, which control a set of multiplexers.
If passthrough_i.passthrough_en
is asserted the SPI_HOST peripheral bus signals reflect the corresponding signals in the passthrough_i
structure.
Otherwise, the peripheral signals are controlled by the SPI_HOST FSM and the internal shift register.
In order to reduce the total number of interrupts in the system, the SPI_HOST has only two interrupt lines: error
and spi_event
.
Within these two interrupt classes, there are a number of conditions which can trigger them.
Each interrupt class has a secondary status and mask register, to control which sub-classes of SPI events will cause an interrupt.
The SPI_HOST IP supports interrupts for the following SPI events:
IDLE
: The SPI_HOST is idle.READY
: The SPI_HOST is ready to accept a new command.RXFULL
: The SPI_HOST has run out of room in the RXFIFO.RXWM
: The number of 32-bit words in the RXFIFO currently exceeds the value set inCONTROL.RX_WATERMARK
.TXEMPTY
: The SPI_HOST has transmitted all the data in the TX FIFO.TXWM
: The number of 32-bit words in the TX FIFO currently is currently less than the value set inCONTROL.TX_WATERMARK
Most SPI events signal a particular condition that persists until it is fixed, and these conditions can be detected by polling the corresponding field in the STATUS
register.
In addition to these events, there are also two additional diagnostic fields in the STATUS
register:
RXSTALL
: The RX FIFO is full, and the SPI_HOST is stalled and waiting for firmware to remove some data.TXSTALL
: The TX FIFO is not only empty, but the SPI_HOST is stalled and waiting for firmware to add more data.
These bits can provide diagnostic data for tuning the throughput of the device, but do not themselves generate event interrupts.
By default none of these SPI events trigger an interrupt.
They need to be enabled by writing to the corresponding field in EVENT_ENABLE
.
The SPI event interrupt is signaled only when the IP enters the corresponding state. For example if an interrupt is requested when the TX FIFO is empty, the IP will only generate one interrupt when the last data word is transmitted from the TX FIFO. In this case, no new interrupts will be created until more data has been added to the FIFO, and all of it has been transmitted.
The SPI_HOST IP will temporarily suspend operations if it detects a potential overflow of the RX FIFO or an attempted underflow of the TX FIFO.
During a stall event, CSB
remains active, and there are no SCK
clock ticks until there is more data to transmit or there is some space to receive more data.
The RXSTALL
and TXSTALL
status bits are meant to inform firmware of such halts.
Due to implementation details the SPI_HOST IP will also pause, and signal a stall condition, if there are delays related to packing or unpacking the SPI_DATA into 32-bit words.
The exact conditions for these transient stall conditions are implementation dependent, and described in detail in the Design Details section.
There are six types of error events which each represent a violation of the SPI_HOST IP programming model:
- If
COMMAND
is written whenSTATUS.READY
is zero, the IP will assertERROR_STATUS.CMDERR
. - The IP asserts
ERROR_STATUS.OVERFLOW
if it receives a write toTXDATA
when the TX FIFO is full. - The IP asserts
ERROR_STATUS.UNDERFLOW
if it software attempts to readRXDATA
when the RX FIFO is empty. - Specifying a command segment with an invalid width (speed), or making a request for a Bidirectional Dual- or Quad-width segment will trigger a
ERROR_STATUS.CMDINVAL
error event. - Submitting a command segment to an invalid CSID (one larger or equal to
NumCS
) will trigger aERROR_STATUS.CSIDINVAL
event. ERROR_STATUS.ACCESSINVAL
is asserted if the IP receives a write event to theTXDATA
window that does not correspond to any known processor data type (byte, half- or full-word).
All of these programming violations will create an error event when they occur.
They will also halt the IP until the corresponding bit is cleared in the ERROR_STATUS
register.
Whenever an error event occurs, the error must be acknowledged by clearing (write 1 to clear) the corresponding bit in ERROR_STATUS
.
By default all error events will trigger an error
interrupt.
Clearing the bit corresponding bit in the ERROR_ENABLE
register in the suppresses interrupts for that class of error event and allows the IP to proceed even if one of these errors has occurred.
The ERROR_STATUS
register will continue to report all violations even if a particular class of error event has been disabled.
Of the six error event classes, ACCESSINVAL
error events are the only ones which cannot be disabled.
This is because ACCESSINVAL
events are caused by anomalous TLUL byte-enable masks that do not correspond to any known software instructions, and can only occur through a fault in the hardware integration.
When handling SPI_HOST error
interrupts, the ERROR_STATUS
bit should be cleared before clearing the error interrupt in the INTR_STATE
register.
Failure do to so may result in a repeated interrupt.
The STATUS
register contains a number of fields that should be queried for successful operation or troubleshooting.
The register STATUS.ACTIVE
indicates whether a command segment is currently being processed by the FSM.
Even if STATUS.ACTIVE
is high it is often still possible to insert another command segment into the command FIFO.
The register STATUS.READY
indicates that there is room in the command FIFO.
The STATUS.BYTEORDER
field indicates the fixed value of the ByteOrder
parameter, which is presented to software to confirm the byte ordering used in the RXDATA
and TXDATA
windows.
The 8-bit fields STATUS.RXQD
and STATUS.TXQD
respectively indicate the number of words currently stored in the RX and TX FIFOs.
The remaining fields in the STATUS
register are all flags related to the management of the TX and RX FIFOs, which are described in the section on SPI Events.
The SPI_HOST IP state machine is disabled on reset.
Before any commands are processed, the block must be enabled by writing one to the CONTROL.SPIEN
register.
Writing a zero to this register temporarily suspends any previously submitted transactions.
If the block is re-enabled by writing a one to CONTROL.SPIEN
, any previously executing commands will continue from wherever they left off.
An unacknowledged error event suspends the core state machine.
In addition to enabling the SPI_HOST FSM, the SPI_HOST outputs must also be enabled for successful operation.
This can be achieved by also setting the CONTROL.OUTPUT_EN
field when enabling the SPI_HOST FSM.
In addition to the global hardware reset, there is a software reset option which completely resets the SPI_HOST IP.
To use this reset, assert CONTROL.SW_RST
, and then wait for the device to reset (STATUS.ACTIVE
, STATUS.TXQD
and STATUS.RXQD
to all go to zero), before releasing CONTROL.SW_RST
.
The SPI_HOST FSM parses the software command segments and orchestrates the proper transmission of data through its control of the shift register.
The FSM directly drives the cio_sck
and cio_csb
signals at the commanded speed.
The shift register is responsible for driving and receiving data on the cio_sd
lines.
By controlling the shift register, the FSM dictates the correct timing for sending out each beat of data, loading tx_bytes from the Byte Select block, and sending rx_bytes onto the Byte Merge block.
Transaction data words flow through the SPI_HOST IP in a path which starts with the TX FIFOs, shown in the block diagram above. At the output of the TX FIFO, each data word is separated into individual bytes by the Byte Select block, which is also responsible for parsing the byte-enable mask and discarding unwanted bytes. Selected bytes are then passed into the shift register, where they are driven out at Standard, Dual, or Quad speed. For receive segments, bytes captured by the shift register are passed into the Byte Merge block to be packed into 32-bit words. The repacked words are then inserted into the RX FIFO to be read by firmware.
All of the blocks in the data path use ready-valid handshakes for flow control.
In addition, the Byte Select block receives a flush
pulse from the shift register to signify when no further data is needed for the current segment.
This allows the Byte Select prim_packer_fifo
to discard any remaining data in the currently held word.
Similarly, the Byte Merge block receives a last
signal from the shift register to identify the end of a command segment.
This triggers any remaining partial words to be passed into the RX FIFO (regardless of whether the last byte forms a complete 32-bit word).
The RX and TX FIFOs store the transmitted and received data, which are stored in synchronous FIFOs. The RX FIFO is 32 bits wide, matching the width of the TLUL register bus. The TX FIFO on the other hand is 36 bits wide, with 32 bits of SPI data (again to match the TLUL bus width) plus 4 byte-enable bits, which are passed into the core to allow the processing of unaligned writes.
The depth of these FIFOs is controlled by two independent compile-time parameters for the RX and TX queues, .RxDepth()
and .TxDepth()
.
Note that the Byte Select
module greedily pops data from the TX FIFO, so the fifo is observed as having an effective depth of N+1 where N is the parameterized depth.
This extra word of data is incorporated into the TX FIFO status signals, and is also reset/cleared in tandem with the fifo.
Therefore, this extra storage is transparent to software.
The Byte Select unit is responsible for loading words from the TX FIFO and feeding individual bytes into the shift register.
This unit takes two data inputs: a data word word_i[31:0]
and a byte enable signal word_be_i[3:0]
.
There is a single output byte_o[7:0]
which feeds the following shift register.
This block is built on the prim_packer_fifo
primative to create the interface between the word-width and byte-width datapaths.
There are ready/valid signals for managing flow control on both the word-input and the byte-output. The shift register asserts ready to request new bytes based on control inputs from the SPI_HOST FSM.
When the SPI_HOST FSM indicates the final byte for a segment, the shift register asserts the flush_i
signal with byte_ready_i
as it requests the last byte from the Byte Select.
This instructs the Byte Select block to send one more byte from current word, and then discard any remaining unused bytes, before immediately loading the next available word from the TX FIFO.
It is assumed that the input data-words and byte enables have already been byte-swapped at the IP top level, as needed.
The bytes are transmitted to the shift register in decreasing significance, starting with word_i[31:24]
, followed by word_i[23:16]
, word_i[15:8]
, and finally word_i[7:0]
.
Some bytes from the input word may be dropped however if the corresponding value of word_be_i[3:0]
is zero.
For example if word_be_i[3:0]
equals 4'b0011
, then the first two input bytes will be skipped, and only word_i[15:8]
and word_i[7:0]
will be forwarded in that order to the shift register.
The following waveform illustrates the operation of the Byte Select module, highlighting the effect of the flush_i
signal (in the first input word), as well as the effect of the byte enable signal (shown in the second word).
{signal: [
{name: "clk_i", wave: "p............."},
{name: "word_i[31:0]", wave: "x2..x2...x....", data: ["32'hBEADCAFE", "32'hDAD5F00D"]},
{name: "word_be_i[31:0]", wave: "x2..x2...x....", data: ["4'b1111", "4'b0011"]},
{name: "word_valid_i", wave: "0..101...0...."},
{name: "word_ready_o",wave: "1...0...10...."},
{name: "byte_o[7:0]", wave: "x...2222.2222x", data: ["BE", "AD", "CA", "0", "DA", "D5", "F0", "0D"]},
{name: "byte_valid_o", wave: "0...1..0...1.0"},
{name: "byte_ready_i", wave: "1............."},
{name: "byte_flush_i", wave: "0.....10......"},
],
head: {
text: "Byte Select Operation"
}
}
The Byte Merge block is responsible for accumulating received bytes from the shift register and packing them into words.
Like the Byte Select block, it is based on the prim_packer_fifo
primitive.
The Byte Merge block has a data byte input and a data word output, which are both flow-controlled by their corresponding ready/valid signals.
An additional input byte_last_i
is used to indicate the final byte in a word.
When byte_last_i
is asserted alongside an input byte, the new byte will be added to the output word, and any remaining bytes will be set to zero before the word is immediately loaded into the RX FIFO.
There are no byte-enable outputs for the byte merge, as it is assumed that software can infer which bytes in the RXFIFO are valid.
The first byte for each read segment is always word-aligned in the RXFIFO, so the COMMAND.LEN
byte-count from the segment can be used to determine the effective byte-enables for the final word.
Input bytes are packed into the output word in decreasing significance.
The first byte in each segment is loaded into word_o[31:24]
.
The following bytes are packed into word_o[23:16]
, word_o[15:8]
, and then word_o[7:0]
.
For partially filled words, the zero padding goes into the least significant byte positions.
Any ByteOrder swapping is performed at the other end of the RX FIFO.
{signal: [
{name: "clk_i", wave: "p.............."},
{name: "byte_i[7:0]", wave: "x22222.2....22x", data: ["01", "02", "03", "04", "05", "06", "07", "08"]},
{name: "byte_valid_i", wave: "01............."},
{name: "byte_last_i", wave: "0....1.0......."},
{name: "byte_ready_o", wave: "1....010...1..."},
{name: "word_o[31:0]", wave: "2.2222222222222", data: ["0", "01","0102","010203", "01020304", "0", "05", "0500", "05000", "050000", "0", "06", "0607", "060708"]},
{name: "word_valid_o", wave: "0....10...10..."},
{name: "word_ready_i", wave: "1.............."}
],
config: {hscale:2},
head: {
text: "Byte Merge Operation"
}
}
The SPI_HOST shift register serially transmits and receives all bytes to the sd_o[3:0]
and sd_i[3:0]
signals, based on the following timing-control signals from the FSM:
speed_i
: Controls the speed of the current data segment, ranging fromStandard
orDual
toQuad
wr_en_i
: Writes a new byte from the Byte Select into the 8-bit shift register This is usually the first signal issued to the shift register in command segments with data to transmit (i.e., TX only, or bidirectional segments)- There is also a
wr_ready_o
output to tell the FSM that there is no data currently available. Ifwr_ready_o
is deasserted when the FSM assertswr_en_i
, the FSM will stall.
- There is also a
last_write_i
: When asserted at the same time aswr_en_i
, this indicates that the current byte is the last of its command segment, and thus thetx_flush_o
signal should be asserted when requesting this byte from the Byte Select block.shift_en_i
: Advances the shift register by 1, 2, or 4 bits, depending on the value ofspeed_i
full_cyc_i
: Indicates full-cycle operation (i.e., input data are sampled fromsd_i
whenever new data is shifted out tosd_o
)sample_en_i
: Samplessd_i[3:0]
into a temporary register,sd_i_q[3:0]
so it can be loaded into the shift register with the next assertion ofshift_en_i
Explicit sampling is particularly required for Standard SPI bidirectional segments, where new input data arrives before the first output shift operation. For consistency in timing, thesd_i_q
buffer is used in all other modes as well, unlessfull_cyc_i
is asserted. Thesample_en_i
signal is ignored during full-cycle operation, in which case data is copied directly into the shift register during shift operations.rd_en_i
: Indicates that the current byte from the shift register should be transferred on to the Byte Merge block- The
rd_ready_o
output informs the FSM whenever all data storage (the RX FIFO plus any intervening buffers) is full and no further data can be acquired.
- The
last_read_i
: When asserted at the same time asrd_en_i
, this indicates that the current byte is the last of its command segment, and thus therx_last_o
signal should be asserted when passing this byte to the Byte Merge block.
{signal: [
{name: "clk_i", wave: "p.........................."},
[ "External signals",
{name: "TX DATA[31:0] (TX FIFO)", wave: "2..........................", data:"0x123456XX"},
{name: "cio_sck_o (FSM)", wave: "0...1010101010101010101010."},
],
{name: "cio_csb_o[0] (FSM)", wave: "1..0......................."},
{name: "tx_data_i[7:0]", wave: "2..2...............2.......", data:["0x12", "0x34", "0x56"]},
{name: "tx_valid_i", wave: "1.........................."},
{name: "tx_ready_o/wr_en_i", wave: "0.10..............10......."},
{name: "sample_en_i", wave: "0..101010101010101010101010"},
{name: "shift_en_i", wave: "0...10101010101010..1010101"},
{name: "speed_i[1:0]", wave: "2..........................", data: ["0 (Standard SPI)"]},
{name: "sd_i[1]", wave: "x..1.1.0.0.1.1.1.1.0.1.0.1."},
{name: "sd_i_q[1]", wave: "x...1.1.0.0.1.1.1.1.0.1.0.1"},
{name: "sr_q[0]", wave: "x..0.1.1.0.0.1.1.1.0.1.0.1."},
{name: "sr_q[1]", wave: "x..1.0.1.1.0.0.1.1.0.0.1.0."},
{name: "sr_q[2]", wave: "x..0.1.0.1.1.0.0.1.1.0.0.1."},
{name: "sr_q[3]", wave: "x..0.0.1.0.1.1.0.0.0.1.0.0."},
{name: "sr_q[4]", wave: "x..1.0.0.1.0.1.1.0.1.0.1.0."},
{name: "sr_q[5]", wave: "x..0.1.0.0.1.0.1.1.1.1.0.1."},
{name: "sr_q[6]", wave: "x..0.0.1.0.0.1.0.1.0.1.1.0."},
{name: "sr_q[7]", wave: "x..0.0.0.1.0.0.1.0.0.0.1.1."},
{name: "sr_q[7:0] (hex)", wave: "x..4.2.2.2.2.2.2.2.4.2.2.2.",
data: ["0x12", "0x25", "0x4B", "0x96", "0x2c", "0x59", "0xB3", "0x67", "0x34", "0x69", "0xD2", "0xA5"]},
{name: "Load Input Data Event", wave: "1..H...............H......."},
{name: "rx_data_o[7:0]", wave: "x..................2.......", data: ["0xcf"]},
{name: "rx_valid_o[7:0]/rd_en_i", wave: "0.................10......."},
{name: "sd_o[0] (sr_q[7])", wave: "x..0.0.0.1.0.0.1.0.0.0.1.1."},
],
head: {
text: "Shift Register During Standard SPI Transaction: Simultaneous Receipt and Transmission of Data."
},
}
The connection from the shift register to the sd
bus depends on the speed of the current segment.
- In Standard-mode, only the most significant shift register bit,
sr_q[7]
is connected to the outputs usingsd_o[0]
. In this mode, eachshift_en_i
pulse is induces a shift of only one bit. - In Dual-mode, the two most significant bits,
sr_q[7:6]
, are connected tosd_o[1:0]
and the shift register shifts by two bits with everyshift_en_i
pulse. - In Quad-mode, the four most significant bits,
sr_q[7:4]
, are connected tosd_o[3:0]
and the shift register shifts four bits with every pulse.
The connections to the shift register inputs are similar.
Depending on the speed, the sd_i
inputs are routed to the 1, 2, or 4 least significant inputs of the shift register.
In full-cycle mode, the shift register LSB's are updated directly from the sd_i
inputs.
Otherwise the data first passes through an input sampling register, sd_i_q[3:0]
, which allows the input sampling events to be staggered from the output shift events.
Temporary delays in the transmission or receipt data are a performance issue. Stall events, which temporarily halt operation of the SPI_HOST IP, often indicate that software is not keeping up with data in the TX and RX FIFOs. For this reason the SPI_HOST IP can create interrupts to help monitor the frequency of these stall events, in order to identify correctable performance delays.
There is also the possibility of encountering bubble events, which cause transient stalls in the data pipeline. Transient stalls only occur for Quad-mode segments, and only when transmitting or receiving words with only one valid byte.
When transmitting at full clock speed, Quad-mode segments need to process one byte every four clock cycles.
If a particular Quad TX segment pulls only one byte from a particular data word (for reasons related either to the segment length or odd data alignment), the prim_packer_fifo
used in the Byte Select block can generate delays of up to four clocks before releasing the next byte.
This can cause temporary stall conditions either during the Quad segment, or--if there is another TX segment immediately following--just before the following segment.
Similar delays exist when receiving Quad-mode data, which are similarly worst when packing words with just one byte (i.e., when receiving segments of length 4n+1). The RX pipeline is however much more robust to such delays, thanks to buffering in the shift register outputs. There is some sensitivity to repeated 4 clock delays, but it takes at least six of them to cause a temporary stall. So transient RX stalls only occur when receiving more than six consecutive one-byte segments. As this is an unlikely use case, transient stalls are considered an unlikely occurrence in the RX path.
Dual- and Standard-mode segments can tolerate byte-to-byte delays of 7 or 15 clocks, so there are no known mechanism for transient stalls at these speeds.
Please refer to the the Appendix for a detailed analysis of transient stall events.
The SPI_HOST FSM is responsible for parsing the input command segments and configuration settings, which it uses to control the timing of the SCK
and CSB
signals.
It also controls the timing of shift register operations, coordinating I/O on the SD
bus with the other SPI signals.
This section describes the SPI_HOST FSM and its control of the SCK
and CSB
lines as well as its interactions with the Shift Register and the Command FIFO.
The SPI_HOST FSM is driven by the rising edge of the input clock, however the FSM state registers are not enabled during every cycle.
There is an internal clock counter clk_cntr_q
which repeatedly counts down from CONFIGOPTS.CLKDIV
to 0, and the FSM is only enabled when clk_cntr_q == 0
.
The exception is when the FSM is one of the two possible Idle states (Idle
or IdleCSBActive
), in which case clk_cntr_q
is constantly held at zero, making it possible to immediately transition out of the idle state as soon as a new command appears.
Once the FSM transitions out of the idle state, clk_cntr_q
resets to CONFIGOPTS.CLKDIV
, and FSM transitions are only enabled at the divided clock rate.
As shown in the waveform below, this has the effect of limiting the FSM transitions to only occur at discrete timeslices of duration:
{signal: [
{name: 'clk', wave: 'p......................'},
{name: 'clkdiv', wave: '2......................', data: "3"},
{name: 'clk_cntr_q', wave: '222222222222......22222', data: "3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3"},
{name: 'FSM state', wave: '2...2.......2.....2...2', data: "WaitTrail WaitIdle Idle WaitLead Hi" },
{name: 'fsm_en', wave: '0..10......1......0..10' },
{name: 'Timeslice Boundary', wave: "1...H...H...H.....H...H"}
],
edge: ["A<->B min. 9 cycles", "C<->D min. 4 cycles"],
head: {text: "Use of FSM Enable Pulses to Realize Multi-Clock Timeslices", tock: 1},
foot: { text: "The fsm_en signal is always high in idle states, to allow exit transitions at any time"}
}
In addition to the FSM state register, the SPI_HOST FSM block also has a number of internal registers to track the progress of a given command segment.
-
wait_cntr_q
: This counter is used the hold the FSM in a particular state for several timeslices, in order to implement theCSNIDLE
,CSNLEAD
orCSNTRAIL
delays required for a particular device. -
byte_cntr_q
,bit_cntr_q
: These counters respectively track the number of bytes left to transmit for the current segment and the number of bits left to transmit in the current byte. -
Finally, there are registers corresponding to each configuration field (
csid_q
,cpol_q
,cpha_
,csnidle_q
,csnlead_q
,csntrail_q
, andfull_cyc_q
) and to each command segment field (csaat
,cmd_rd_en
,cmd_wr_en
, andcmd_speed
). This registers are sampled whenever a new command comes in, allowing the command inputs to change.
The state machine itself is easiest understood by first considering a simple case, with CSAAT set to zero. For this initial discussion it is assumed that every command consists of one single segment. Multi-segment commands are considered in the following sections. In this case the state machine can be simplified to the following figure.
The operation of the state machine is the same regardless of the polarity (CPOL) or phase (CPHA) of the current command.
Commands with CPOL = 0
or CPOL = 1
are processed nearly identically, since the only difference is in the polarity of the sck
output.
The state machine drives an internal SCK
clock signal, which is low except when the FSM is in the InternalClockHigh
state.
If CPOL = 0
this clock is registered as is to the external SCK
ports.
If CPOL = 1
the internal clock is inverted before the final SCK
output register.
In the following description of the individual states, it is assumed that CPOL = 0
.
To understand the IP's behavior for transactions with CPOL = 1
, simply invert the value of SCK
.
-
Idle state: In this initial reset state, The
SCK
signal is low, and allCSB
lines are high (i.e., inactive). An input command is registered whenevercommand_valid_i
andcommand_ready_o
are both high (i.e., when the signalnew_command = command_valid_i & command_ready_o
is high), in which case the state machine transitions to theWaitLead
state. -
WaitLead state: In this state,
SCK
remains low, and theCSB
line corresponding tocsid
is asserted-low. The purpose of this state is to holdSCK
low for at leastcsnlead
+ 1 timeslices, before the first rising edge ofSCK
. For his reason, the FSM uses thewait_cntr
to track the number of timeslices spent in this state, and only exits whenwait_cntr
counts down to zero, at which point the FSM transitions to theInternalClkHigh
state. -
InternalClkHigh state: Entering this state drives
SCK
high. This state repeats many times per segment, and usually transitions to theInternalClkLow
state. The FSM transitions to theWaitTrail
state only when the entire segment has been transmitted/received (as indicated by the signals last_bit and last_byte). This state machine usually only lasts stays in this state for one timeslice, except when the FSM is disabled or stalled. -
InternalClkLow state: This state serves to drive
SCK
low between visits to theInternalClkHigh
state. This state always returns back to theInternalClkHigh
state in the next timeslice. -
WaitTrail state: Similar to the WaitLead, this state serves to control the timing of the
CSB
line. The FSM uses thewait_cntr
register to ensure that it remains in this state forcsntrail+1
timeslices, during which time the activeCSB
is still held low. Thewait_cntr
register resets toCONFIGOPTS.CSNTRAIL
upon entering this state, and is decremented once per timeslice. This state transitions toWaitIdle
whenwait_cntr
is zero. -
WaitIdle state: In this timing control state, the FSM uses the
wait_cntr
register to ensure that allCSB
lines are held high for at leastcsnidle+1
timeslices. Thewait_cntr
register resets toCONFIGOPTS.CSNIDLE
upon entering this state, and is decremented once per timeslice. This state transitions toIdle
whenwait_cntr
reaches zero.
{signal: [
{name: 'clk', wave: 'p...............'},
{name: 'rst_n', wave: '01..............'},
{name: 'state', wave: 'x22.42424242.2.2', data: ['Idle', 'WaitLead', 'IntClkHigh', 'IntClkLow', 'IntClkHigh', 'IntClkLow', 'IntClkHigh', 'IntClkLow','IntClkHigh', 'WaitTrail', 'WaitIdle', 'Idle']},
{name: 'csb (active device)', wave: 'x10..........1..'},
{name: 'csb (all others)', wave: '1...............'},
{name: 'sck', wave: '0...10101010....'}
],
config: {hscale: 2}
}
The FSM manages I/O on the SD
bus by controlling the timing of the shift register control signals: shift_en_o
, sample_en_o
, rd_en_o
, last_read_o
, wr_en_o
, and last_write_o
.
The shift register control signals are managed through the use of three intermediate signals:
byte_starting
: This signal indicates the start of a new byte on theSD
bus in the following clock cycle. For Bidirectional or TX segments this signal would indicate that it is time to load a new byte into the shift register. This signal corresponds to the FSM'swr_en_o
port, though that output is suppressed during RX or dummy segments.byte_ending
: This signal indicates the end of the currentSD
byte in the current clock cycle (i.e., the next clock cycle either marks the beginning new byte or the end of the current segment). As illustrated in the following waveform, thebyte_starting
andbyte_ending
signals are often asserted at the same time, though there is an extrabyte_starting
pulse at the beginning of each command and an extrabyte_ending
pulse at the end. For RX and bidirectional command segments, abyte_ending
pulse generates ard_en_o
pulse to the shift register, which transfers the 8-bit contents of the shift register into the RX FIFO via the Byte Merge block.bit_shifting
: This signal drives theshift_en_o
control line to the shift register, ejecting the most-significant bits, and updating theSD
outputs.
These milestone signals mark the progress of each command segment.
The coordination of the milestone signals and the shift register controls are shown in the following waveform.
Since the milestone signal pulses coincide with entering particular FSM states, they are derived from the state register inputs (i.e., state_d
), as opposed to the state register outputs (state_q
).
{signal: [
{name: 'clk', wave: 'p........................'},
{name: 'rst_n', wave: '01.......................'},
{name: 'state_q',
wave: 'x2.2.42424242424242424242', data: "Idle WL Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo",
node: '...W..V.............U'},
{name: 'csb', wave: 'x1.0.....................'},
{name: 'sck', wave: '0....10101010101010101010'},
{name: 'state_d',
wave: 'x22.42424242424242424242', data: "Idle WL Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo",
node: '..Z..Y.............X'},
{name: 'byte_starting / wr_en_o',
wave: 'x010...............10....',
node: '..A................E'},
{name: 'byte_ending / rd_en_o',
wave: 'x0.................10....',
node: '...................F'},
{name: 'bit_shifting / shift_en_o',
wave: 'x0...10101010101010..1010',
node: '.....C'},
{name: 'sample_en_o',
wave: 'x0.10.1010101010101010101',
node: '...B..D'},
{name: 'sample_event',
wave: '1...H..H.H.H.H.H.H.H.H.H.'},
{name:'sd_o',
wave:'x..2..2.2.2.2.2.2.2.2.2.2',
node:'',
data: "A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] B[7] B[6]"},
{name: 'bit_cntr_q', wave: 'x2.2..2.2.2.2.2.2.2.2.2.2', data: "0 7 6 5 4 3 2 1 0 7 6 5"},
{name: 'byte_cntr_q', wave: 'x2.2................2....', data: "0 N N-1"},
],
edge: ['A-~>B', 'C-~>D', 'Z-~>A', 'Y-~>C', 'X-~>E', 'X-~>F', 'Z-~>W', 'Y-~>V', 'X-~>U'],
config: {hscale: 1},
head: {text: "Timing Relationship between FSM states, Milestone Signals, and Shift Register controls (with CPHA=0)"},
foot: {text: "Key: WL=\"WaitLead\", Hi=\"InternalClkHigh\", Lo=\"InternalClkLow\" "}
}
When working from a CPHA = 0
configuration, the milestone signals are directly controlled by transitions in the FSM state register, as described in the following table.
Milestone Signal | FSM Triggers |
---|---|
byte_starting | Entering WaitLead |
Entering InternalClkLow and bit_cntr == 0 | |
bit_shifting | Entering InternalClkLow and bit_cntr != 0 |
byte_ending | Exiting InternalClkHigh and bit_cntr == 0 |
When working from a CPHA = 1
configuration, the milestone signals exploit the fact that there is usually a unique correspondence between CSB
/SCK
events and FSM transitions.
There are some exceptions to this pattern since, as discussed below, CSAAT- and multi-csb-support requires the creation of multiple flavors of idle states.
However, there are no milestone signal pulses in any of the transitions between these various idle states.
Thus in CPHA = 1
mode, the milestone signals are delayed by one-state transition.
For example, in a CPHA = 0
configuration the first data burst should be transmitted as the CSB
line is asserted low, that is, when the FSM enters the WaitLead state.
Thus a byte_starting
pulse is generated at this transition.
On the other hand, in CPHA = 1
configuration the first data burst should be transmitted after the first edge of SCK
, which happens on the next state transition as illustrated in the following waveform.
That said, there are two copies of each milestone signal:
- the original FSM-driven copy, for use when operating with
CPHA = 0
, and - a delayed copy, for use in
CPHA = 1
operation.
{signal: [
{name: 'clk', wave: 'p......................'},
{name: 'rst_n', wave: '01.....................'},
{name: 'state_q',
wave: 'x2.2.4242424242424242.2', data: "Idle WL Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi WT WI",
node: '...W..V.....U..........'},
{name: 'state_d',
wave: 'x22.4242424242424242.2', data: "Idle WL Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi WT WI",
node: '..Z..Y.....X..........'},
{name: 'byte_starting_cpha0',
wave: 'x010.......10..........',
node: '..A........C...........'},
{name: 'byte_starting_cpha1',
wave: 'x0..10......10.........',
node: '....B.......D..........'},
{name: 'byte_ending_cpha0',
wave: 'x0.........10......10..',
node: '...........E...........'},
{name: 'byte_ending_cpha1',
wave: 'x0..........10......10.',
node: '............F..........'},
{name: 'bit_shifting_cpha0',
wave: 'x0...101010..101010....',
node: '.....G...I...K.........'},
{name: 'bit_shifting_cpha1',
wave: 'x0....101010..101010...',
node: '......H...J...L'},
{name: 'csb', wave: 'x1.0..................1'},
{name: 'sck', wave: '0....1010101010101010..'},
["CPHA=0",
{name: 'byte_starting',
wave: 'x010.......10..........'},
{name: 'bit_shifting',
wave: 'x0...101010..101010....'},
{name: 'bit_cntr_q', wave: 'x2.2..2.2.2.2.2.2.2....',
data: "0 6 4 2 0 6 4 2 0"},
{name: 'byte_cntr_q', wave: 'x2.2........2..........',
data: "0 1 0"},
{name:'sd_o',
wave:'x0.2..2.2.2.2.2.2.2...0',
node:'',
data: "A[7:6] A[6:5] A[4:3] A[1:0] B[7:6] B[6:5] B[4:3] B[1:0]"}
],
["CPHA=1",
{name: 'byte_starting',
wave: 'x0..10......10.........'},
{name: 'bit_shifting',
wave: 'x0....101010..101010...'},
{name: 'byte_ending',
wave: 'x0..........10......10.'},
{name: 'bit_cntr_q', wave: 'x2...2.2.2.2.2.2.2.2...',
data: "0 6 4 2 0 6 4 2 0"},
{name: 'byte_cntr_q',
wave: 'x2.2.........2.........',
data: "0 1 0"},
{name:'sd_o',
wave:'x0...2.2.2.2.2.2.2.2..0',
node:'',
data: "A[7:6] A[6:5] A[4:3] A[1:0] B[7:6] B[6:5] B[4:3] B[1:0]"}
],
],
edge: ['Z-~>A','Y-~>G', 'X-~>C', 'X-~>E','A->B', 'C->D', 'E->F', 'G->H', 'I->J', 'K->L', 'Z->W', 'Y->V', 'X->U'],
config: {hscale: 1},
head: {text: "Comparison of Milestone Signals in CPHA=0 vs. CPHA=1 configuration (for a dual speed segment)"},
foot: {text: "Key: WL=\"WaitLead\", Hi=\"InternalClkHigh\", Lo=\"InternalClkLow\", WT=\"WaitTrail\""}
}
The previous waveform also highlights the relationship between the milestone signals and the bit and byte counters.
At the beginning of each byte bit_cntr_q
is reset to a speed-specific value, to trigger the correct number of shift operations required for each byte:
- 7 for Standard-mode
- 6 for Dual-mode
- 4 for Quad-mode
The reset of the bit_cntr_q
counter is triggered by the byte_starting
register.
Meanwhile the bit_shifting
signal triggers a decrement of the bit-shifting register.
The size of the decrement also depends on the speed of the current segment:
- 1 for Standard-mode
- 2 for Dual-mode
- 4 for Quad-mode
The byte_cntr_q
register is updated from the COMMAND.LEN
register value, at the beginning of each segment, and decremented after each byte_ending
pulse until the counter reaches zero.
This relationship between the milestone signals and the bit and byte counters is also illustrated in the previous waveform.
As described in the Theory of Operation, changes in configuration only occur when the SPI_HOST IP is idle. The configuration change must be preceded by enough idle time to satisfy the previous configuration, and followed by enough idle time to satisfy the new configuration.
In order to support these idle time requirements, the SPI_HOST FSM has two idle waiting states.
- The
WaitIdle
state manages the idle time requirements of the preceding command segment, and usually transitions to theIdle
state afterwards. - From the
Idle
state the FSM monitors for changes in configuration, and transitions to theConfigSwitch
state if any changes are detected in the next incoming command segment. This state introduces delays long enough the satisfy the idle time requirements of following command segment. From theConfigSwitch
state, the state machine directly enters theWaitLead
state to start the next command segment.
A complete state diagram, including the ConfigSwitch
state, is shown in the following section.
The following waveform illustrates how a change in a single CONFIGOPTS
, here CONFIGOPTS.CPOL
, triggers an entry into the ConfigSwitch
Idle state, and how the new configuration is applied at the transition from WaitIdle
to ConfigSwitch
thereby ensuring ample idle time both before and after the configuration update.
{signal: [
{name: 'clk', wave: 'p.................'},
{name: 'command_i.csid', wave: '2.................', data: ["0"]},
{name: 'command_i.configopts.cpol', wave: '1........x........'},
{name: 'cpol_q', wave: '0........1........'},
{name: 'switch_required', wave: '1........x........'},
{name: 'command_valid_i', wave: '1........0........'},
{name: 'command_ready_i', wave: '0.......10........'},
{name: 'FSM state', wave: '2222..2..2..2..222', data: ["Hi", "Lo", "Hi", "WaitTrail", "WaitIdle", "ConfigSwitch", "WaitLead", "Hi", "Lo", "Hi"]},
{name: 'csb[0]', wave: '0.....1.....0.....'},
{name: 'sck', wave: '1010.....1.....010'},
{name: 'configuration update event', wave: '1........H........'}
],
edge: ["A<->B min. 9 cycles", "C<->D min. 4 cycles"],
head: {text: "Extension of CSB Idle Pulse Due to CPOL Configuration Switch", tock: 1},
foot: { text: "(Note: Due to the presence of a valid command, the FSM transitions directly from WaitIdle to ConfigSwitch)"}
}
In addition to omitting the ConfigSwitch
state, the simplified state machine illustrated above does not take into account commands with multiple segments, where the CSAAT bit is enabled for all but the last segment.
When the CSAAT bit in enabled there is no idle period between the current segment and the next, nor are the two adjoining segments separated by a Trail or Lead period.
Usually the end of each segment is detected in the InternalClkHigh
state, at which point, if CSAAT is disabled, the FSM transitions to the WaitTrail
state to close out the transaction.
However, if CSAAT is enabled the WaitTrail
state is skipped, and the next state depends on whether there is another command segment available for processing (i.e., both command_ready_o
and command_valid_i
are both asserted).
In order to support seamless, back-to-back segments the ConfigSwitch
state can be skipped if a new segment is already available when the previous ends, in which case the FSM transitions directly to the InternalClkLow
at the end of the previous segment.
If there is no segment available yet, the FSM must pause and idly wait for the next command in the special IdleCSBActive
state.
This state serves a similar purpose to the Idle
state since in this state the IP is doing nothing but waiting for new commands.
It is different from the Idle
state though in that during this state the active CSB
is held low.
When a command segment is received in the IdleCSBActive
state, it transitions immediately to the InternalClkLow
state to generate the next SCK
pulse and process the next segment.
{signal: [
{name: 'clk', wave: 'p...........'},
{name: 'command_ready_o', wave: '0.1....0....'},
{name: 'command_valid_i', wave: '0.....10....'},
{name: 'new_command', wave: '0.....10....'},
{name: 'state', wave: '2222...22222', data: ["Hi", "Lo", "Hi", "IdleCSBActive", "Lo", "Hi", "Lo", "Hi", "Lo"]},
{name: 'sck (CPOL=0)', wave: '1010....1010'},
{name: 'sd (CPHA=0)', wave: '35.....3.4.5'}
],
edge: ["A<->B min. 9 cycles", "C<->D min. 4 cycles"],
head: {text: "Idling While CS Active", tock: 1}
}
The following figure shows the complete state transition diagram of for the SPI_HOST FSM.
The Idle
and IdleCSBActive
states are unique from the others in that:
- In order to respond to an incoming command the FSM can exit these idle states at any time, regardless of the current timeslice definition.
(In fact, since different commands may use different values for the
CLKDIV
configuration parameter, the concept of a timeslice is poorly defined when idle). - These idle states may be bypassed in order to support more efficient transitions from one command segment to the next. If an incoming command is detected as the FSM is about to enter an idle state, that idle state is skipped, and the FSM immediately transitions to the next logical state, based on the contents of the new incoming command.
These bypassable states, which are highlighted in the previous diagram, represent a number of possible transitions from one pre-idle state to a following post-idle state.
For clarity such transitions are left implicit in the diagram above.
However they could also be explicitly added to the state diagram.
For example, the implicit transitions around the Idle
are shown in the following figure.
Whenever the shift register needs to transfer data in (or out) of the RX (TX) FIFOs, but they are full (or empty), the FSM immediately stalls to wait for new data.
During this stall period none of the FSM internal registers are updated. Normal operation proceeds only when the stall condition has been resolved or the SPI_HOST has been reset.
In the SPI_HOST FSM this is realized by disabling all flop updates whenever a stall is detected.
Furthermore, all control signals out of the FSM are suppressed during a stall condition.
From an implementation standpoint, the presence of a stall condition has two effects on the SPI_HOST FSM:
-
No flops or registers may be updated during a stall condition. Thus the FSM may not progress while stalled.
-
All handshaking or control signals to other blocks must be suppressed during a stall condition, placing backpressure on the rest the blocks within the IP to also stop operations until the stall is resolved.
Even if the RX (or TX) FIFOs have free-space (or data) available, stall events can still happen due to momentary backlogs or bubbles in the data pipeline.
For instance, the Byte Merge and Byte Select blocks occasionally need some extra cycles to clean out the internal prim_packer_fifo
.
These delays are likely to cause transient stalls particularly, when constructing transactions with many short (less than 4-byte) segments.
Transient stalls could lead to false diagnostics when trying to optimize SPI_HOST throughput.
Thus it is useful to analyze the shift register's tolerance to bubble events, particularly for the highest bandwidth Quad-mode SPI.
The transient analysis stall analysis is simpler for the TX direction.
There is no buffering on the shift register TX data inputs because it would complicate the byte_flush
operation on the Byte Select block.
In Quad-mode, the shift register will demand one new byte as often as once every four clock cycles. (This rate is slowed down if for a non-trivial clock-divide ratio). Meanwhile, the Byte Select Block pauses once for every disabled byte, and once more at the end of each word. Thus if the Byte Select block is loaded with three-consecutive bytes-disables (either in the same word or across two separate words), this will create a pause of 4-clock cycles between two bytes causing a transient stall event.
Assuming that each TX Word has at least one byte enabled, the longest possible transient delay between two Byte Select outputs is 7 clock cycles (with three byte-disables in two adjacent words, respectively aligned for maximal delay and assuming no delays in the TX FIFOs themselves). Dual- and Standard-mode segments can tolerate inter-byte delays of 7 or 15 clocks respectively, and thus transient stalls should not be a problem after Dual- or Standard-mode segments.
Similar to the Byte Select, the Byte Merge block must pause for at least one cycle between each word. Also when at the end of a segment the Byte Merge packs less than four bytes into the last word, there is also an additional cycle of delay for each unused byte. Thus if the last word in a given segment has only one valid byte, the total delay will be four clock cycles.
Such stalls however are a much smaller concern in the RX direction due to the buffering of the Shift Register outputs. As shown in the following waveform, even in Quad-mode, this buffer means the shift register can tolerate as many as six clock cycles of temporary back-pressure before creating a stall.
{signal: [
[ "Shift Register Ports",
{name: "clk_core_i", wave: "p..........................."},
{name: "wr_en_i", wave: "010..10..10..10..10..10..1.0"},
{name: "shift_en_i", wave: "0..10..10..10..10..10..10..."},
{name: "rd_en_i", wave: "0....10..10..10..10..10..1.0"},
{name: "rx_valid_o (to Byte Merge)", wave: "0.....10..1....0..10..1....."},
{name: "rx_ready_i (from Byte Merge)", wave: "1......0.....1.....0......1.",
node: ".......A.....B.....C......D"},
{name: "rd_ready_o (to FSM)", wave: "1.........0..1........0...1."}],
["FSM Port", {name: "rx_stall_o", wave: "0........................10."}],
{name: ""}
],
edge: ["A<->B 6 clocks: No Stall", "C<->D 7 clocks will stall FSM"],
head: {text: "SPI_HOST Shift Register: Tolerance to Gaps in rx_ready_i", tick:1}
}
Even though such long delays are tolerable, it takes some time for shift register to catch up completely and clear the backlog. For example, if after a 6-clock delay the shift-register encounters another 4-clock backlog this can also introduce a stall condition, as shown in the waveform below.
{signal: [
["Shift Register Ports",
{name: "clk_core_i", wave: "p........................"},
{name: "wr_en_i", wave: "010..10..10..10..1.0..10."},
{name: "shift_en_i", wave: "0..10..10..10..10...10..1"},
{name: "rd_en_i", wave: "0....10..10..10..1.0..10."},
{name: "rx_valid_o", wave: "0.....10..1...........010"},
{name: "rx_ready_i (from Byte Merge)", wave: "1......0.....10...10.1...",
node: ".......A.....BC...D"},
{name: "rd_ready_o (to FSM)", wave: "1.........0..10...10.1..."}],
["FSM Port", {name: "rx_stall_o", wave: "0................10......"}],
{name: "", wave: ""},
],
edge: ["A<->B 1st Gap: 6 clocks", "C<->D 2nd Gap: 4 clocks"],
head: {text: "SPI_HOST Shift Register: Back-to-back gaps in rx_ready_i", tick:1}
}
Delays of 3-clocks or less do not create any internal backlog in the system. However, the Byte Merge block can create a 4-clock delay each time it processes a single-byte segment. In practice, this is unlikely to cause a problem, as no Quad-SPI Flash transactions require even two back-to-back RX segments. However with enough (at least six) consecutive one-byte segments, the accumulated delay can eventually create a stall event on the RX path as well, as seen below.
{signal: [
[ "Shift Register Ports",
{name: "clk_core_i", wave: "p..........................."},
{name: "wr_en_i", wave: "010..10..10..10..10..10..1.0"},
{name: "shift_en_i", wave: "0..10..10..10..10..10..10..."},
{name: "rd_en_i", wave: "0....10..10..10..10..10..1.0"},
{name: "rx_valid_o", wave: "0.....10..1.0.1..01........."},
{name: "rx_ready_i (from Byte Merge)", wave: "1......0...10...10...10...10",
node: ".......A...BC...D"},
{name: "rd_ready_o (to FSM)", wave: "1.........01..0.1.0..10...10"}],
[ "FSM Port",
{name: "rx_stall_o", wave: "0........................10."}],
{name: ""}
],
edge: ["A<->B 4 clocks", "C<->D 4 clocks"],
head: {text: "SPI_HOST Shift Register: Hypothetical RX Congestion Scenario", tick:1},
foot: {text: "Six back-to-back quad reads 1-byte each, same CSID, CSAAT enabled"}
}