-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
187 lines (167 loc) · 5.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import os.path as osp
from glob import glob
import re
import math
import numpy as np
import cv2
def writeObj(vertices, src_path, dst_path):
src_obj = open(src_path,'r')
dst_obj = open(dst_path, 'w')
src_obj_content = src_obj.readlines()
# write header
dst_obj.write(src_obj_content[0])
dst_obj.write(src_obj_content[1])
dst_obj.write(src_obj_content[2])
dst_obj.write(src_obj_content[3])
dst_obj.write(src_obj_content[4])
dst_obj.write(src_obj_content[5])
# Write vertices
dst_obj.write("\n# Vertex positions\n")
for vertex in vertices:
dst_obj.write("v %.5f %.5f %.5f\n" %(vertex[0], vertex[1], vertex[2]))
# Write texcoords and faces
for line in src_obj_content:
if line.split(' ')[0] == 'vt':
dst_obj.write(line)
if line.split(' ')[0] == 'f':
dst_obj.write(line)
if line.split(' ')[0] == 'g':
dst_obj.write(line)
if line.split(' ')[0] == 'usemtl':
dst_obj.write(line)
def readObjV2(file_path):
obj_file = open(file_path,'r')
contents = obj_file.readlines()
v,vt,v_idx,vt_idx = [],[],[],[]
for line in contents:
parts = line.split(' ')
if parts[0] == 'v':
vertex = [float(i) for i in parts[1:4]]
v.append(vertex)
if parts[0] == 'vt':
texcoord = [float(i) for i in parts[1:3]]
vt.append(texcoord)
if parts[0] == 'f':
vertex_index = [int(i.split('/')[0]) for i in parts[1:4]]
v_idx.append(vertex_index)
texcoord_index = [int(i.split('/')[1]) for i in parts[1:4]]
vt_idx.append(texcoord_index)
v = np.array(v)
vt = np.array(vt)
v_idx = np.array(v_idx)
vt_idx = np.array(vt_idx)
return v,vt,v_idx,vt_idx
def readObj(file_path):
obj_file = open(file_path,'r')
contents = obj_file.readlines()
vertices, texcoords, faces = [],[],[]
for line in contents:
parts = line.split(' ')
if parts[0] == 'v':
vertex = [float(i) for i in parts[1:4]]
vertices.append(vertex)
if parts[0] == 'vt':
texcoord = [float(i) for i in parts[1:3]]
texcoords.append(texcoord)
if parts[0] == 'f':
face = [int(i.split('/')[0]) for i in parts[1:4]]
faces.append(face)
vertices = np.array(vertices)
texcoords = np.array(texcoords)
faces = np.array(faces)
return vertices, texcoords, faces
def R_axis_angle(axis, angle):
"""Generate the rotation matrix from the axis-angle notation.
Conversion equations
====================
From Wikipedia (http://en.wikipedia.org/wiki/Rotation_matrix), the conversion is given by::
c = cos(angle); s = sin(angle); C = 1-c
xs = x*s; ys = y*s; zs = z*s
xC = x*C; yC = y*C; zC = z*C
xyC = x*yC; yzC = y*zC; zxC = z*xC
[ x*xC+c xyC-zs zxC+ys ]
[ xyC+zs y*yC+c yzC-xs ]
[ zxC-ys yzC+xs z*zC+c ]
@param axis: The 3D rotation axis.
@type axis: numpy array, len 3
@param angle: The rotation angle.
@type angle: float
"""
# Trig factors.
ca = math.cos(angle)
sa = math.sin(angle)
C = 1 - ca
# Depack the axis.
x, y, z = axis
# Multiplications (to remove duplicate calculations).
xs = x*sa
ys = y*sa
zs = z*sa
xC = x*C
yC = y*C
zC = z*C
xyC = x*yC
yzC = y*zC
zxC = z*xC
matrix = np.zeros((3,3))
# Update the rotation matrix.
matrix[0, 0] = x*xC + ca
matrix[0, 1] = xyC - zs
matrix[0, 2] = zxC + ys
matrix[1, 0] = xyC + zs
matrix[1, 1] = y*yC + ca
matrix[1, 2] = yzC - xs
matrix[2, 0] = zxC - ys
matrix[2, 1] = yzC + xs
matrix[2, 2] = z*zC + ca
return matrix
def getScaleCenterfromKp(keypoints, kp_type, height_pixels = 150.):
min_pt = np.amin(keypoints,0)
max_pt = np.amax(keypoints,0)
person_height = np.linalg.norm(max_pt - min_pt)
if person_height == 0:
print('bad!')
import ipdb
ipdb.set_trace()
if kp_type == 'aug_joints_v2':
center = keypoints[0] #pelvis
else:
raise NotImplementedError('joints type not supported!')
scale = height_pixels / person_height
return scale, center
def resize_img(img, scale_factor):
new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int)
new_img = cv2.resize(img, (new_size[1], new_size[0]))
# This is scale factor of [height, width] i.e. [y, x]
actual_factor = [
new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1])
]
return new_img, actual_factor
def scaleCrop(image, keypoints, scale, center, img_size=256):
if len(image.shape) == 3 and image.shape[2] == 4:
image = image[:, :, :3]
image_scaled, scale_factors = resize_img(image, scale)
# Swap so it's [x, y]
scale_factors = np.array([scale_factors[1], scale_factors[0]])
center_scaled = np.round(center * scale_factors).astype(np.int)
keypoints_scaled = keypoints * scale_factors.reshape(1,-1)
margin = int(img_size / 2)
center_pad = center_scaled + margin
keypoints_pad = keypoints_scaled + margin
start_pt = center_pad - margin
end_pt = center_pad + margin
keypoints_crop = keypoints_pad - start_pt
if len(image.shape) == 3: # rgb
image_pad = np.pad(image_scaled, ((margin, ), (margin, ), (0, )), mode='edge')
img_crop = image_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :]
else: # mask
image_pad = np.pad(image_scaled, ((margin, ), (margin, )), mode='edge')
img_crop = image_pad[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0]]
proc_param = {
'scale': scale,
'start_pt': start_pt,
'end_pt': end_pt,
'img_size': img_size
}
return img_crop, keypoints_crop, proc_param