-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCIA_SDG_regressor.py
315 lines (265 loc) · 13.3 KB
/
CIA_SDG_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
from reader import Reader
import json
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import PowerTransformer
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.model_selection import cross_val_score
from sklearn.metrics import r2_score
def principal(df, n_clusters=5, dimensions=3):
"""A pipeline where first a k-means clustering is performed for the dataset.
Then the dimensionality of dataset is reduced by PCA.
Finally a 3-dimensional scatter plot is drawn (with point size as the third dimension).
: param df : a pandas DataFrame with standardized values for the dependent variables to be clustered,
: param n_clusters : how many clusters to form,
: param dimensions : number of principal components to consider via the PCA.
"""
# K-means clustering:
X = df.to_numpy()
clusters = KMeans(n_clusters)
clusters.fit(X)
# Principal component analysis:
pca = PCA(dimensions)
pca.fit(X)
r = pca.explained_variance_ratio_
print("\nExplained variance ratio by principal components:",r,"explaining",sum(r),"of the total variance")
Z=pca.transform(X)
# Scatter plot (first PC as x-axis, second PC as y-axis and third PC as point size (with some rescaling) and colours signifying clusters):
labels = df.index.tolist()
fig, ax = plt.subplots()
ax.scatter(Z[:,0], Z[:,1], s=(Z[:,2]+5)**2, c=clusters.labels_)
for i, lbl in enumerate(labels):
rnd = 1+np.random.rand()/10-0.05 # Add some randomness to labels, to minimize overlap
cp = 'black'
if (lbl == 'finland'):
cp = 'blue'
ax.annotate(lbl, xy=(Z[i,0], Z[i,1]), xytext=(Z[i,0], rnd*Z[i,1]), color=cp)
plt.title(f"Countries by chosen CIA variables in {n_clusters} clusters")
plt.text(-4.7, 3.6, "Point size as third principal component")
plt.text(-4.7, 3.4, f"(explains {r[2]:.2f} of variance)")
plt.xlabel(f"First principal component (explains {r[0]:.2f} of variance)")
plt.ylabel(f"Second principal component (explains {r[1]:.2f} of variance)")
plt.show()
def transform(df):
"""This method is used to standardize data.
: param df : a pandas DataFrame with values to transform,
: return : a DataFrame with standardized values.
"""
pt = PowerTransformer()
result = pt.fit_transform(df)
return result
def combine(df):
""" This method combines the CIA and SVG data.
: param df : a pandas DataFrame with CIA data,
: return : a DataFrame with CIA and SVG data combined.
"""
# Choose data
y = pd.read_csv("data_ICT.csv")
# Drop countries from CIA dataframe that are not in SDG data
X=df[df['geo_area_code'].isin(y['geoAreaCode'].to_numpy())]
# Drop countries drom SDG dataframe that are not in CIA data
y=y[y['geoAreaCode'].isin(X['geo_area_code'].to_numpy())]
print("\nSVG data found for following countries:",list(y['Country']))
# Save also the missing countries data from CIA data
missing=df[~df['geo_area_code'].isin(y['geoAreaCode'].to_numpy())]
# Sort X and y
X=X.sort_values(by=['geo_area_code'])
y=y.sort_values(by=['geoAreaCode'])
# Choose only wanted values from X and y to be used in the regression model
y=y['Value']
X=X.drop(['geo_area_code'], axis=1)
missing=missing.drop(['geo_area_code'], axis=1)
return (X, y, missing)
def linear_regression(X, y, missing):
"""This method performs Linear Regression and plots scatter plots to visualize dependencies.
: param X : Independent variables,
: param y : Dependent variable values used to train the model,
: param missing : Dependent variable values to be predicted.
: return : A pandas DataFrame with predicted values.
"""
# Evaluate the model by cross-validation (using R-squared values as the metric).
reg = LinearRegression()
scores=cross_val_score(reg, X, y, cv=3, scoring='r2')
print("\nScores of cross-validation (for linear regression):", scores)
print("Mean of scores of cross-validation:", np.mean(scores))
# Construct the linear regression model
reg = LinearRegression().fit(X, y)
# Predict the values of the missing data
prediction=pd.DataFrame({'Country': missing.index, 'Value': reg.predict(missing)})
pred=prediction.to_numpy()
# Plot the real and predicted values of SDG data for each input variable
y=y.to_numpy()
k=0
for col_name in X.columns:
fig, ax = plt.subplots()
ax.scatter(X.to_numpy()[:,k], y, label='Real values', c='b')
ax.scatter(missing.to_numpy()[:,k], pred[:,1], label='Predicted values', c='orange')
for i, txt in enumerate(missing.index):
ax.annotate(txt, (missing.loc[txt][col_name], pred[i][1]), color='black')
for i, txt in enumerate(X.index):
ax.annotate(txt, (X.loc[txt][col_name], y[i]), color='black')
k=k+1
plt.xlabel(col_name)
plt.ylabel("Means of proportions of youth and adults with various ICT-skills")
plt.legend(loc='upper left')
plt.show()
return prediction
def rfr_optimizer(X, y):
"""This method creates a random grid of different combinations of hyperparameters and uses cross validation to pick the best one.
: param X : Independent variables,
: param y : Dependent variable values used to train the model,
: return : Dictionary with optimal parameters (names of the parameters as keys and values as values).
"""
# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 50, stop = 500, num = 19)]
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(50, 150, num = 11)]
# Minimum number of samples required to split an internal node
min_samples_split = [2,3,4]
# Minimum number of samples required to be at a leaf node
min_samples_leaf = [1,2,3]
# Create the random grid from different hyperparameters.
random_grid = {'n_estimators': n_estimators,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf}
# Use the random grid to search for best hyperparameters for Random Forest Regressor
rf = RandomForestRegressor()
# Random search of parameters, using 3 fold cross validation, search across 100 random combinations, using all available cores
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid, n_iter = 100, cv = 3, n_jobs = -1)
# Check which set of parameters yielded best results and return that
rf_random.fit(X, y)
best = rf_random.best_params_
return best
def random_forest_regressor(X, y, missing):
"""This method performs a Random Forest Regressor with optimized hyperparameters and plots scatter plots to visualize dependencies.
: param X : Independent variables,
: param y : Dependent variable values used to train the model,
: param missing : Dependent variable values to be predicted.
: return : A pandas DataFrame with predicted values.
"""
# Optimise hyperparameters and evaluate the model by cross-validation (using R-squared values as the metric).
print("\nOptimising the Random Forest Regressor. This will take up to 60 seconds. Please wait patiently...")
params = rfr_optimizer(X, y)
print("Best parameters found for Random Forest Regressor are:\n", params)
rfr = RandomForestRegressor(
n_estimators=params['n_estimators'],
max_depth=params['max_depth'],
min_samples_split=params['min_samples_split'],
min_samples_leaf=params['min_samples_leaf'],
max_features='sqrt',
bootstrap=True,
oob_score=True
)
scores=cross_val_score(rfr, X, y, cv=3, scoring='r2')
print("\nScores of cross-validation (Random Forest Regressor):", scores)
print("Mean of scores of cross-validation:", np.mean(scores))
# Construct the Random Forest Classifier model
rfr = rfr.fit(X, y)
# Predict the values of the missing data
pd.set_option("display.max_rows", None, "display.max_columns", None)
prediction=pd.DataFrame({'Country': missing.index, 'Value': rfr.predict(missing)})
pred=prediction.to_numpy()
# Plot the real and predicted values of SDG data for each input variable
y=y.to_numpy()
k=0
for col_name in X.columns:
fig, ax = plt.subplots()
ax.scatter(X.to_numpy()[:,k], y, label='Real values', c='b')
ax.scatter(missing.to_numpy()[:,k], pred[:,1], label='Predicted values', c='orange')
for i, txt in enumerate(missing.index):
ax.annotate(txt, (missing.loc[txt][col_name], pred[i][1]), color='black')
for i, txt in enumerate(X.index):
ax.annotate(txt, (X.loc[txt][col_name], y[i]), color='black')
k=k+1
plt.xlabel(col_name)
plt.ylabel("Means of proportions of youth and adults with various ICT-skills")
plt.legend(loc='upper left')
plt.show()
return prediction
def main():
"""This is a test program to give a 'proof-of-concept' for how to mine and combine data from CIA factbook and SDG jsons."""
with open("factbook.json", "r", encoding='utf8', errors='ignore') as f:
factbook = json.load(f)["countries"] # This creates a nested dictionary with all the data in a single .json
r = Reader(factbook) # A Reader object with a more accessible interface and unnecessary data filtered out.
data_query = [ # A query to create a DataFrame from the interesting stuff. Comment out stuff you don't need.
# Geographic data
# "continent",
# "area",
# "irrigated",
# Population data
# "population",
# "children",
"median_age",
"population_growth",
"birth_rate",
# "death_rate",
# "migration",
"infant_mortality",
"life_expectancy",
# "fertility",
# "literacy",
# "lit_men",
# "lit_women",
# Economic data
# "growth",
"gdp",
"agriculture",
# "industry",
"services",
# "unemployment",
# "poverty",
"low_decile",
"high_decile",
# "revenues",
# "expenditures",
# "public_debt",
# "inflation",
# "reserves",
# "foreign_debt",
# Military spending
# "military",
# Transnational issues
# "refugees",
# "internal_refugees"
]
result = r.read_data(data_query) # Pass the query to the Reader object
cc = pd.read_csv("country_codes.csv", sep=";", index_col="country") # Read country codes from a manually created .csv file.
result = pd.merge(result, cc, how="inner", right_index=True, left_index=True) # Add geoarea code to DataFrame result.
print("\nThe following were not found for Finland:",r.get_missing_data("finland")) # See which values were not in the factbook for finland.
unwanted_data = ["world", "european_union", "cameroon", "japan", "luxembourg", "zambia", "mongolia", "romania"]
result = result.drop(unwanted_data) # Manually choose regions not to be included in the analysis (larger entities or outliers)
nr = len(result.index)
cropped_result = result.dropna() # Get rid of data points, which contain NaN values.
nc = len(cropped_result.index)
print("\n",(nr-nc),"results were dropped out of",nr,"because of missing data in CIA factbook for a total of",nc,"data points.")
print("\nCIA data with variables:",data_query,"\nfound for following countries:\n", list(cropped_result.index))
print("\nOutliers or larger regions manually left out:",unwanted_data)
# Combine CIA factbook data with SDG data to form independent and dependent variables, as well as data to be used in predictions
ind, dep, miss = combine(cropped_result)
# Construct and analyze the linear regression model
lin_pred = linear_regression(ind, dep, miss)
lin_pred.set_index('Country', inplace=True)
lin_pred.rename(columns = {'Value': 'LR'}, inplace=True)
# Construct and analyze the Random Forest regression model
rfr_pred = random_forest_regressor(ind, dep, miss)
rfr_pred.set_index('Country', inplace=True)
rfr_pred.rename(columns = {'Value': 'RFR'}, inplace=True)
# Print the predicted values from both models for comparison
values = pd.merge(lin_pred, rfr_pred, how="inner", right_index=True, left_index=True)
pd.set_option("display.max_rows", None, "display.max_columns", None)
print("\nComparison of predicted values for missing countries by different models:")
print(values)
# Standardize data and perform PCA and k-means clustering.
cropped_result = cropped_result.drop(['geo_area_code'], axis=1) # Geo area codes are no longer needed.
transformed = pd.DataFrame(transform(cropped_result), columns=cropped_result.columns, index=cropped_result.index)
principal(transformed, n_clusters=3, dimensions=3) # Choose the number of clusters and PCA-dimensions here.
if __name__ == "__main__":
main()