-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
82 lines (73 loc) · 7.75 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python3
import numpy as np
import pandas as pd
from collections import defaultdict
class Reader():
""" A class for parsing data from CIA-factbook .jsons with few accessor methods. """
def t_e_wrapper(self, country, function, *args, **kwargs):
""" This wrapper function is necessary to handle exceptions caused by missing data. """
try:
look = function(*args, **kwargs) # Evaluate query
return look
except KeyError as missing:
self.missing_data[country].append(missing.args[0]) # Add the missing data into appropriate slot.
return np.nan # Add a NaN as a value for the missing key.
def encode(self):
""" This creates a dictionary which encodes query words to match the nested structure of the factbook.json format. """
return {
# Geographic data
"continent": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["geography"]["map_references"]) for x in self.countries],
"area": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["geography"]["area"]["total"]["value"]) for x in self.countries],
"irrigated": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["geography"]["irrigated_land"]["value"]) for x in self.countries],
# Population data
"population": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["population"]["total"]) for x in self.countries],
"children": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["age_structure"]["0_to_14"]["percent"]) for x in self.countries],
"median_age": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["median_age"]["total"]["value"]) for x in self.countries],
"population_growth": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["population_growth_rate"]["growth_rate"]) for x in self.countries],
"birth_rate": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["birth_rate"]["births_per_1000_population"]) for x in self.countries],
"death_rate": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["death_rate"]["deaths_per_1000_population"]) for x in self.countries],
"migration": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["net_migration_rate"]["migrants_per_1000_population"]) for x in self.countries],
"infant_mortality": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["infant_mortality_rate"]["total"]["value"]) for x in self.countries],
"life_expectancy": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["life_expectancy_at_birth"]["total_population"]["value"]) for x in self.countries],
"fertility": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["total_fertility_rate"]["children_born_per_woman"]) for x in self.countries],
"literacy": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["literacy"]["total_population"]["value"]) for x in self.countries],
"lit_men": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["literacy"]["male"]["value"]) for x in self.countries],
"lit_women": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["people"]["literacy"]["female"]["value"]) for x in self.countries],
# Economic data
"growth": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["gdp"]["real_growth_rate"]["annual_values"][0]["value"]) for x in self.countries],
"gdp": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["gdp"]["per_capita_purchasing_power_parity"]["annual_values"][0]["value"]) for x in self.countries],
"agriculture": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["gdp"]["composition"]["by_sector_of_origin"]["sectors"]["agriculture"]["value"]) for x in self.countries],
"industry": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["gdp"]["composition"]["by_sector_of_origin"]["sectors"]["industry"]["value"]) for x in self.countries],
"services": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["gdp"]["composition"]["by_sector_of_origin"]["sectors"]["services"]["value"]) for x in self.countries],
"unemployment": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["unemployment_rate"]["annual_values"][0]["value"]) for x in self.countries],
"poverty": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["population_below_poverty_line"]["value"]) for x in self.countries],
"low_decile": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["household_income_by_percentage_share"]["lowest_ten_percent"]["value"]) for x in self.countries],
"high_decile": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["household_income_by_percentage_share"]["highest_ten_percent"]["value"]) for x in self.countries],
"revenues": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["budget"]["revenues"]["value"]) for x in self.countries],
"expenditures": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["budget"]["expenditures"]["value"]) for x in self.countries],
"public_debt": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["public_debt"]["annual_values"][0]["value"]) for x in self.countries],
"inflation": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["inflation_rate"]["annual_values"][0]["value"]) for x in self.countries],
"reserves": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["reserves_of_foreign_exchange_and_gold"]["annual_values"][0]["value"]) for x in self.countries],
"foreign_debt": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["economy"]["external_debt"]["annual_values"][0]["value"]) for x in self.countries],
# Military data
"military": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["military_and_security"]["expenditures"]["annual_values"][0]["value"]) for x in self.countries],
# Transnational issues
"refugees": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["transnational_issues"]["refugees_and_iternally_displaced_persons"]["refugees"]["by_country"][0]["people"]) for x in self.countries],
"internal_refugees": [self.t_e_wrapper(x, lambda : self.factbook[x]["data"]["transnational_issues"]["refugees_and_iternally_displaced_persons"]["internally_displaced_persons"]["people"]) for x in self.countries]
}
def __init__(self, factbook):
""" Constructs the Reader object from a given .json file """
self.factbook = factbook
self.countries = list(factbook.keys()) # a list of all entries in the factbook
self.missing_data = defaultdict(list) # a dictionary with countries as keys and list of missing information as values
self.data = self.encode()
def get_missing_data(self, country):
""" See what data is missing for a given country. """
return self.missing_data[country]
def read_data(self, which):
""" Takes a list of all information to be fetched as an argument.
The elements of the list must match keys found in the dictionary self.data.
Returns a data frame with countries as indexes and data as columns."""
data_array = np.array([self.data[x] for x in which])
df = pd.DataFrame(data_array.T, columns=which, index=self.countries) # read info we are interested in
return df