-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK2_AnyR-fixed.Rmd
545 lines (431 loc) · 19.4 KB
/
K2_AnyR-fixed.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
---
jupyter:
jupytext:
formats: ipynb,Rmd
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.3.2
kernelspec:
display_name: R
language: R
name: ir
---
# Bayesian network structure from database
Bayesian networks are networks that can provide insight into probabilistic dependencies that exist among variables in a dataset. In particular we focus on using a Bayesian belief network as a model of probabilistic dependency.
A Bayesian belief-network $B_S$ is a directed acyclic graph in which nodes represent domain variables and the links represent probabilistic dependencies. Variables can be discrete of continuous, but in this work we will focus on discrete variables.
A Bayesian belief structure , $B_S$ is augmented by conditional probabilities, $B_P$, to form a Bayesian belief network $B=(B_S, B_P)$. For each node $x_i$ there is a conditional probability function that relates the node to its immediate predecessor, called parents and denoted with $\pi_i$. If a node has no parents a prior probability $P(x_i)$ is specified.
The key feature of belief networks is their explicit representation of the conditional indipendence and dependence among events. In particular the joint probability of any instantiation of all $n$ variables in a belief network can be calculated as follows:
$$
P(X_1, \ldots,X_n)=\prod_{i=1}^n P(X_i|\pi_i)
$$
where $X_i$ represent the instantiation of the variable $x_i$ and the $\pi_i$ are the parents of $x_i$.
## The basic model
Let $D$ be a database of cases, $Z$ be the set of variables represented by $D$ and $B_{S_i}$, $B_{S_j}$ be two belief networks structures containing exactly those variables that are in Z. Then:
$$
\frac{P(B_{S_i}|D)}{P(B_{S_j}|D)}\stackrel{prod-rule}{=}\frac{P(B_{S_i},D)}{P(B_{S_j},D)}
$$
We now make some assumptions for computing $P(B_S,D)$ efficiently:
1. The database variables, which we denote with $Z$, are **discrete**. We thus have:
$$
P(B_S, D)=\int_{B_P}P(D|B_s,B_P)f(B_P|B_S)P(B_S)dB_P
$$
where $B_P$ is a vector which denotes the conditional probability assignments associated with belief network structure $B_S$, and $f$ is the conditional probability density function over $B_P$ given $B_S$.
2. Cases occur **independently**, given a belief network model. The Eq \ref{discr} becomes:
$$
P(B_S, D)=\int_{B_P}\left[\prod_{h=1}^mP(C_h|B_S,B_P)\right]f(B_P|B_S)P(B_S)dB_P
$$
where $m$ is the number of cases in $D$ and $C_h$ is the $h$-th case in $D$.
3. There are **no** cases that have variables with **missing values**.
4. The density function $f(B_P|B_S)$ is **uniform**.
We now denote with $w_{ij}$ the $j$-th of $q_i$ unique instantiations of the values of the variables in $\pi_i$, relative to the ordering of the cases in $D$. We then define $v_{ik}$ the $k$-th of the $r_i$ possible instantiations of the variable $x_i$ in $Z$. We lastly define $N_{ijk}$ as the number of casas in $D$ in which the variable $x_i$ has value $v_{ik}$ and $\pi_i$ is instantiated as $w_{ij}$.
Calling:
$$
N_{ij}=\sum_{k=1}^{r_i}N_{ijk}
$$
we finally get:
$$
P(B_S,D)=P(B_S)\prod_{i=1}^n\prod_{j=1}^{q_i} \frac{(r_i-1)!}{(N_{ij}+r_i-1)!}\prod_{k=1}^{r_i}N_{ijk}!
$$
Once we have $P(B,D)$ it is easy to find the conditional probability. Let $Q$ be the set of all those belief-network structures that contain just the variables in set $Z$, then:
$$
P(B_{S_i}|D)=\frac{P(B_{S_i},D)}{\sum_{B_S\in Q}P(B_S,D)}
$$
We can also look at smaller part of the network. Let $G$ be a belief network structure, such that the variables in G are a subset of those in $Z$. Let $R$ be the set of those structures in $Q$ that contains $G$ as a subgraph. Then:
$$
P(G|D)=\frac{\sum_{B_S\in R}P(B_S,D)}{\sum_{B_S\in Q}P(B_S,D)}
$$
## K2 algorithm
However the size and the computational time of finding the structure of a belief network increase exponentially with $n$. So an exact method is not possible: we will apply a greedy search algorithm known as K2. This algorithm begins by making the assumption that a node has no parents. and then adds incrementally that parent whose addition most increase the probability of the resulting structure. We stop the procedure when the addition of no single parent does not increase further the probability.
We define:
$$
g(i,\pi_i)=\prod_{j=1}^{q_i} \frac{(r_i-1)!}{(N_{ij}+r_i-1)!}\prod_{k=1}^{r_i}N_{ijk}!
$$
We also define the function Pred($x_i$) which returns the set of nodes that precede $x_i$ in the node ordering. We thus have the procedure:
- *Input*: a set of $n$ nodes, an ordering of the nodes, an upper bound $u$ to the number of parents a node may have and a database $D$ containing $m$ cases.
- *Output*: For each node a printout of the parents of the node.
```{r}
#Needed packages installation
#install.packages("bnlearn")
#install.packages("bnstruct")
```
```{r}
library("bnlearn")
library("bnstruct")
```
```{r}
# Pseudocode, not to run
for(i in 1:n){ # Cycle over the nodes
pi.i <- c() # Empty vector
p.old <- g(i, pi.i) # Function defined above
OKtoGO <- TRUE
while(OKtoGO & length(pi.i)<u ){
# let z be the node in Pred(x_i)-pi.i that maximizes g(i, pi.i U {z} )
z <- which.max( g(i, c(pi.i, pred(x_i)) ) )
p.new <- g(i, pi.i)
if(p.new >p.old){ # The new configuration is more probable
p.old <- p.new
pi.i <- c(pi.i, z) # New parents adding z
}
else{ OKtoGO <- FALSE }
}
cat('Node:', x.i, ' Parents of this node:', pi.i)
}
```
```{r}
# Sample dataset D
# (x1, x2, x3) are binary variables
x1 <- c(1, 1, 0, 1, 0, 0, 1, 0, 1, 0)
x2 <- c(0, 1, 0, 1, 0, 1, 1, 0, 1, 0)
x3 <- c(0, 1, 1, 1, 0, 1, 1, 0, 1, 0)
df <- data.frame(x1, x2, x3)
```
$$ f(i, \pi_i) = \prod_{j=1}^{q_i} \frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \prod_{k=1}^{r_i} N_{ijk}! $$
$$ \log f(i, \pi_i) = \sum_{j=1}^{q_i} \Big[ \log (r_i - 1)! - \log (N_{ij} + r_i - 1)! + \sum_{k=1}^{r_i} \log N_{ijk}! \Big]$$
```{r}
#Precompute all needed (log)factorials (1 to m + r -1)
n <- ncol(df)
m <- nrow(df)
r <- 2 #number of possible values
factorials <- log(c(1, 1:(m+r-1)))
for (i in 4:length(factorials)) { #first 3 are already correct
factorials[i] <- factorials[i] + factorials[i-1]
}
#factorials[i+1] = log(i!) (since in R indices start from 1)
```
```{r}
# Vectorization of the maximization over the possible parents of the probability
# Creating a list of length 1 from the previous parents
i.par <- list( i.parents )
# Creating a list of length length(i.parents.candidates)
i.cand <- as.list(i.parents.candidates)
# Appending to each element of i.cand the list i.par, and so all the previous parents
i.possible.parents <- mapply(append, i.cand, i.par, SIMPLIFY = FALSE)
# Apply f over all possible parents and then making it a vector
possible.funs <- unlist( lapply(i.possible.parents, f, index=i, database=df) )
log.p.new <- max( possible.funs) # max value
newparent.index <- which.max( possible.funs) # index of the max value
```
```{r}
pred <- function(i, ordering){
# Parameters:
# - i: int
# index of the variable of which we are searching the precedents
# - ordering: vector of size n or list of n1 vectors of total size n
# If vector must contain a valid permutation of the integers [1, 2 ... n], representing the "prior" ordering of variables,
# such that the variable with index ordering[i] can have as possible parents only variables with index ordering[j] with j < i
# (i.e. variables that "appear before it" in the provided ordering).
# If list must contains the layers of the networks, representing the "prior" ordering of variables,
# such that the variable with index ordering[[i]] can have as possible parents only variables in the previous layers, and so
# with index ordering[[j]] with j<i. Notice that n1<=n, and if it is equal we come back to the previous case.
if (class(ordering)=='list'){ # Layer ordering, each element of the list is a layer
for (h in 1:length(ordering)){
if (i %in% ordering[[h]] ){
i.pos <- h
break # Once we find i.pos we don't need to look at the other layers
}
}
if( i.pos == 1){ #If i is in the first layer, there are no parents to check
next
} else { # Notice the unlist. We treat all the preceding layers equally
i.parents.candidates <- unlist( ordering[1:i.pos-1] )
}
} else { # Normal ordering, the input is a vector
#Compute vector of candidate parents for i
i.pos <- which(ordering == i)
if (i.pos == 1) { #If i is at the start of the ordering, there are no parents to check
next
} else {
i.parents.candidates <- ordering[1:i.pos-1]
}
}
return(i.parents.candidates)
}
```
```{r}
# K2 algorithm implementation
# Parameters:
# - database : data.frame of size (m, n). #? Since it is always numeric, we could use a matrix also here!
# Dataset containing m observations of n variables, with no missing values.
# All values must be integers between 0 and r-1.
# - u : integer
# Maximum number of parents for each node.
# - ordering : vector of size n OR list of n1 vectors of total size n
# If vector must contain a valid permutation of the integers [1, 2 ... n], representing the "prior" ordering of variables,
# such that the variable with index ordering[i] can have as possible parents only variables with index ordering[j] with j < i
# (i.e. variables that "appear before it" in the provided ordering).
# If list must contains the layers of the networks, representing the "prior" ordering of variables,
# such that the variable with index ordering[[i]] can have as possible parents only variables in the previous layers, and so
# with index ordering[[j]] with j<i. Notice that n1<=n, and if it is equal we come back to the previous case.
# Output:
# adj : matrix of size (n, n)
# Adjacency matrix of the most probable Directed Acyclic Graph found given the evidence in the database.
# adj[i,j] is 1 if there is a connection from node j to node i (i.e. if j is a parent of i) #? We could take the transpose,
# since it is most common to use i -> j
#TODO:
# - Optimize! (kinda done)
# - Add support for layered ordering (if ordering is a list use layers, if it is vector use current method) (DONE, TO TEST)
# - ? Support for missing values in the database (or we could use bnstruct? See the method in the paper)
# (From the paper: just use every possible value, but it is exponentially complex in the
# number of missing values. Another possibility is to assign the value U to missing
# data, thus treating a variable with r levels and missing data as a variable with r+1 levels)
# - ? Organize code with classes
# - ? Fancy stuff (organize in a R package, use roxygen2 to add documentation, and testthat for unit tests)
K2 <- function(database, u, ordering) {
debug <- FALSE
n <- ncol(database)
m <- nrow(database)
r <- max(database) + 1 # Check if minimum is 0, and if all values between min and max are used
adj <- matrix(data = 0, nrow = n, ncol = n) #Allocate adjacency matrix
db.plus1 <- database + 1 #Useful for indices computation
for (i in 1:n) {
i.parents <- c() #Each node i starts with no parents
#Evaluate (log)-probability of i having no parents
counts <- rep(0,r)
for (nrow in 1:m) {
counts[db.plus1[nrow,i]] <- counts[db.plus1[nrow,i]] + 1
}
log.p.old <- factorials[r] - factorials[m+r] + sum(factorials[counts + 1])
if (debug) cat('x', i, ' [], log(p) = ', log.p.old, '\n')
OKToProceed <- TRUE
#Determine which nodes can be parents of i
#TODO: Add checks for consistency
if (class(ordering)=='list'){ # Layer ordering, each element of the list is a layer
for (h in 1:length(ordering)){
if (i %in% ordering[[h]] ){
i.pos <- h
break
}
}
if( i.pos == 1){
next
} else {
i.parents.candidates <- unlist( ordering[1:i.pos-1] )
}
} else { # Normal ordering, the input is a permutation
i.pos <- which(ordering == i) #Position of i in the ordering. Only variables before this position can be parents of i
if (i.pos == 1) { #If i is at the start of the ordering, there are no parents to check
next
} else {
i.parents.candidates <- ordering[1:i.pos-1]
}
}
parents.length <- length(i.parents)
#Add at most u nodes as parents of i,
#only if each one of them increases the structure's probability
while (OKToProceed & parents.length < u) {
log.p.new <- -Inf
newparent.index <- NA
#To compute probabilities, we need a matrix of frequencies N.jk
#N.jk[j, k] <- frequency of cases in the database
#with parents(x_i) == j-th value and x_i == k-th value
#j goes from 1 to r**(length(parents))
#k goes from 1 to r
#First we compute the indices for each case in the database
#Then we compute their frequencies
index.k <- db.plus1[,i] #k index (vector of size m)
#j can be computed by taking the values of the columns in database corresponding to the
#parents of i, and treating them as digits of a number in base r
todec <- r ** (0:max(0, parents.length - 1))
if (parents.length > 0)
index.j.common <- as.matrix(database[,i.parents]) %*% todec + 1
else
index.j.common <- rep(1,m)
dim(index.j.common) <- NULL
#Adding a new parent is equivalent to adding a new column to the above matrix
#i.e. adding a new digit to the number in base r.
#Thus we can compute at once the indices j obtained by adding every parent candidate
#one at a time
index.j.new <- r**(max(0, parents.length)) *
as.matrix(database[,i.parents.candidates]) + index.j.common
#Matrix of size (m, length(i.parents.candidates))
#Then we can compute the frequencies and so the probabilities:
last.c <- 0
for (c in 1:length(i.parents.candidates)) {
N.jk <- matrix(data = 0, nrow = r**(parents.length + 1), ncol = r)
#Frequencies for the c-th candidate
for (nrow in 1:m) {
N.jk[index.j.new[nrow, c], index.k[nrow]] <- N.jk[index.j.new[nrow, c], index.k[nrow]] + 1
}
# if (debug) {
# cat('Candidate ', i.parents.candidates[c], '\n')
# print(N.jk)
# cat('\n')
# }
N.j <- rowSums(N.jk)
N.jk.logfact <- matrix(data = factorials[N.jk + 1], nrow = r**(parents.length + 1))
factor.first <- factorials[r] #r_i-1+1
factor.second <- factorials[N.j+r] #+r_i -1 +1
factor.third <- rowSums(N.jk.logfact)
log.p.candidate <- sum(factor.first - factor.second + factor.third)
if (debug) cat('x', i, ' [', i.parents, ', +', i.parents.candidates[c], '+], log(p) = ', log.p.candidate, '\n')
if (log.p.candidate > log.p.new) { #Select the candidate with the highest probability
log.p.new <- log.p.candidate
newparent.index <- i.parents.candidates[c]
last.c <- c #index of candidate in the i.parents.candidates vector (!= newparent.index)
}
}
#Accept the new parent candidate only if it increases the total structure's probability
if (log.p.new > log.p.old) {
log.p.old <- log.p.new
i.parents <- c(i.parents, newparent.index)
if (debug) cat(newparent.index, ' -> ', i, '\n')
parents.length <- parents.length + 1
adj[i, newparent.index] = 1 #Save the result
#Remove the added parent from the candidates list
i.parents.candidates <- i.parents.candidates[-last.c]
if (length(i.parents.candidates) == 0) { #If there are no candidates to check, terminate
OKToProceed <- FALSE
if (debug) cat('\n---\n')
}
} else { #If probability does not increase, stop adding parents to i
OKToProceed <- FALSE
if (debug) cat('\n---\n')
}
}
}
return(adj)
}
```
```{r}
#Print the structure
start_time <- Sys.time()
structure <- K2(df, 2, c(1,2,3))
stop_time <- Sys.time()
print(structure)
print(stop_time - start_time)
```
```{r}
#Should be:
# [0, 0, 0]
# [1, 0, 0]
# [0, 1, 0]
for (i in 1:nrow(structure)) {
cat("Node ", i, " : [")
for (j in 1:ncol(structure)) {
if (structure[i,j]) {
cat(j)
}
}
cat("]\n")
}
```
```{r}
net <- graph_from_adjacency_matrix(t(structure), mode="directed")
l <- cbind(1:3, rep(0,3))
l <- norm_coords(l, ymin=-1, ymax=0, xmin=-1, xmax=4)
plot(net, layout=l) #for some reason the plot size is too big...
```
```{r}
library('bnlearn')
library('bnstruct')
```
```{r}
log.fact <- function(m, r){
# Return the logarithm of the first m+r-1 factorials
# m: int, number of cases in the dataset
# r: int, number of possible values a variable can assume
fact <- log( c(1, 1:(m+r-1)) )
for (i in 4:length(fact)) { #first 3 are already correct
fact[i] <- fact[i] + fact[i-1]
}
return(fact)
}
factorials <- log.fact(m, r)
```
```{r}
data.alarm <- data.frame(sapply(alarm, as.numeric)-1)
m <- nrow(data.alarm)
r <- 4
factorials <- log.fact(m, r)
```
```{r}
order <- c(18, 20, 3, 9, 15, 23, 36, 21, 19, 17, 16, 30, 11, 35, 22, 29,
2, 24, 0, 1, 27, 25, 12, 34, 14, 33, 31, 10, 32, 13, 26, 28, 6, 5, 7, 8, 4)+1
start_time <- Sys.time()
structure <- K2(data.alarm, 4, order)
end_time <- Sys.time()
#Performance is worst. But at least it works :)
print(structure)
al.name <- colnames(data.alarm)
for (i in 1:nrow(structure)) {
cat("Node ", al.name[i], " : [")
for (j in 1:ncol(structure)) {
if (structure[i,j]) {
cat(al.name[j], ' ')
}
}
cat("]\n")
}
cat('Took ', end_time-start_time, 's\n')
```
```{r}
a <- matrix(data=1, nrow=3, ncol=2)
b <- matrix(data=2, nrow=3, ncol=1)
```
```{r}
dim(b) <- NULL
```
```{r}
b
```
```{r}
a+b
```
```{r}
al_net <- load('alarm.rda')
```
```{r}
names <- sapply(c(1:37), function(x) bn[[x]]$node )
adj <- matrix( data=0, nrow=length(names), ncol=length(names))
i <- 1
for(n in bn){
par <- n$parents
for(p in par){
idx <- which( names==p )
print(idx)
adj[i, idx[1]] <- 1
}
i <- i+1
}
```
```{r}
```
```{r}
names
```
```{r}
colnames(data.alarm)
```
```{r}
c('HIST')
```
```{r}
#TODO
#---Coding---#
#Evaluate the performance (timing)
#Bnstruct
#---Writing---#
#Write comments for everything
```