-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path05_PerformanceChecks.Rmd
741 lines (537 loc) · 21 KB
/
05_PerformanceChecks.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
---
jupyter:
jupytext:
formats: ipynb,Rmd
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.3.2
kernelspec:
display_name: Python 3
language: python
name: python3
---
```{python}
# Visualization
import matplotlib.pyplot as plt
import matplotlib
from tqdm.notebook import tqdm
from time import time
from copy import deepcopy
# %config InlineBackend.figure_format = 'svg' # Makes the images look nice
# Numpy
import numpy as np
from numpy import linalg as LA
#importing cirq
import cirq
# importing Qiskit
from qiskit import QuantumCircuit, execute, Aer
from qiskit.circuit import library as lb
from qiskit.ignis.verification import get_ghz_simple
# Tensor networks
import quimb as quimb
from ncon import ncon
#User-defined functions in support files
from MPS_QFT.helper import print_state, right_contract, left_contract
from MPS_QFT.helper import to_full_MPS, to_dense, to_approx_MPS
from MPS_QFT.manual import apply_two_qubit_gate_full, max_bond_dimension, apply_two_qubit_gate, apply_one_qubit_gate
from MPS_QFT.gates import CPHASE, cphase_swap_qiskit, cphase_swap_quimb
from MPS_QFT.circuit import qft_circuit_swap_full, qft_circuit_swap_approx
from MPS_QFT.circuit import qft_circuit_qiskit, circ_data, MPS_circ
```
```{python}
# Plotting LateX figures
matplotlib.use("pgf")
matplotlib.rcParams.update({
"pgf.texsystem": "pdflatex",
'font.family': 'serif',
'text.usetex': False,
'pgf.rcfonts': False,
"pgf.preamble": [ r"\usepackage[utf8]{inputenc}" ]
})
#Font size configuration
SMALL_SIZE = 8
MEDIUM_SIZE = 10
BIGGER_SIZE = 11
BIGGEST_SIZE = 12
#All sizes are customizable here
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGEST_SIZE) # fontsize of the figure title
#plt.rcParams['axes.facecolor'] = 'white'
```
```{python}
def get_figsize(wf=0.5, hf=(5.**0.5-1.0)/2.0, ):
"""Parameters:
- wf [float]: width fraction in columnwidth units
- hf [float]: height fraction in columnwidth units.
Set by default to golden ratio.
- columnwidth [float]: width of the column in latex. Get this from LaTeX
using \showthe\columnwidth
Returns: [fig_width,fig_height]: that should be given to matplotlib
"""
columnwidth = 510.0 #! The width of the Latex paper should be put here [OK]
fig_width_pt = columnwidth*wf
inches_per_pt = 1.0/72.27 # Convert pt to inch
fig_width = fig_width_pt*inches_per_pt # width in inches
fig_height = fig_width*hf # height in inches
return [fig_width, fig_height]
```
## Quimb-qiskit interface
```{python}
# Controlled NOT
CNOT = quimb.controlled('not')
# Hadamard
H = quimb.gen.operators.hadamard()
# SWAP
SWAP = quimb.gen.operators.swap()
# Dictionary of the gates
gates = {'h': H,
'cx': CNOT,
'cp': CPHASE,
'swap': SWAP}
```
## Time performance tests
### Quimb - $\chi=2$
```{python}
#run QFT on different number of qubits, store execution times
#quimb implementation with bond dimension chi=2
N_quimb = np.arange(4, 17, dtype=int)
times_quimb_approx = np.zeros( (len(N_quimb), 2) )
for i, n in enumerate(tqdm(N_quimb)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n) #do not measure time to generate state!
for _ in range(50):
start = time()
qc = QuantumCircuit(n)
qft_circuit_qiskit(qc, n)
psi0 = MPS_circ(qc, gates, init_state=state, chi=2)
psi_dense = psi0.to_dense()
times.append( time()-start )
times_quimb_approx[i, :] = ([np.mean(times), np.std(times) ])
```
### Quimb - full
```{python}
#run QFT on different number of qubits, store execution times
#quimb implementation with maximum choice of bond dimension
times_quimb_full = np.zeros( (len(N_quimb), 2) )
for i, n in enumerate(tqdm(N_quimb)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
for _ in range(50):
start = time()
#choose the maximum bond dimension possible
chi = 2**(np.floor(n/2))
qc = QuantumCircuit(n)
qft_circuit_qiskit(qc, n)
psi0 = MPS_circ(qc, gates, init_state=state, chi=chi)
psi_dense = psi0.to_dense()
times.append( time()-start )
times_quimb_full[i, :] = ([np.mean(times), np.std(times) ])
```
### Manual - with bond dimension $\chi=2$
```{python}
#run QFT on different number of qubits, store execution times
#manual implementation with bond dimension chi fixed to 2
times_manual_chi = np.zeros( (len(N_quimb), 2) )
for i,n in enumerate(tqdm(N_quimb)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
mps = [s.data for s in state]
state = [mps[0]] + [s.transpose(0,2,1) for s in mps[1:-1]] + [mps[-1]]
for _ in range(50):
start = time()
result = qft_circuit_swap_approx(state, n, chi=2)
result = to_dense(result).flatten()
times.append( time()-start )
times_manual_chi[i,:] = ( [np.mean(times), np.std(times) ])
```
### Manual - full
```{python}
#run QFT on different number of qubits, store execution times
#manual implementation with maximum choice of bond dimension
N_manual = np.arange(4, 17, dtype=int)
times_manual_full = np.zeros( (len(N_manual), 2) )
for i,n in enumerate(tqdm(N_manual)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
mps = [s.data for s in state]
state = [mps[0]] + [s.transpose(0,2,1) for s in mps[1:-1]] + [mps[-1]]
for _ in range(50):
start = time()
result = qft_circuit_swap_full(state, n)
result = to_dense(result).flatten()
times.append( time()-start )
times_manual_full[i,:] = ( [np.mean(times), np.std(times) ])
```
#### Save/load data
```{python}
save = True
if save:
np.save("times_quimb_approx", times_quimb_approx)
np.save("times_quimb_full", times_quimb_full)
np.save("times_manual_chi", times_manual_chi)
np.save("times_manual_full", times_manual_full)
# times_quimb_approx = np.load(".\\data\\times_quimb_approx.npy")
# times_quimb_full = np.load(".\\data\\times_quimb_full.npy")
# times_manual_chi = np.load(".\\data\\times_manual_chi.npy")
# times_manual_full = np.load(".\\data\\times_manual_full.npy")
# N_quimb = np.arange(4, 17, dtype=int)
# N_manual = np.arange(4, 17, dtype=int)
```
### Fit
```{python}
#Data to be fit is in xs and ys
from scipy.optimize import curve_fit
from scipy import stats
def straight_line(x, a, b):
return a + b*x
fit_log_xs = np.log10(N_quimb) #Move to log-log space
#mask
mask = fit_log_xs > np.log10(6)
fit_log_xs = fit_log_xs[mask]
fit_log_ys_q_approx = np.log10(times_quimb_approx[mask,0])
err_log_q_approx = np.log10(times_quimb_approx[mask,1])
fit_log_ys_q = np.log10(times_quimb_full[mask,0])
err_log_q = np.log10(times_quimb_full[mask,1])
fit_log_ys_man = np.log10(times_manual_chi[mask,0])
err_log_man = np.log10(times_manual_chi[mask,1])
popt_q_approx, pcov_q_approx = curve_fit(straight_line, fit_log_xs, fit_log_ys_q_approx, sigma=err_log_q_approx)
popt_q, pcov_q = curve_fit(straight_line, fit_log_xs, fit_log_ys_q, sigma= err_log_q)
popt_man, pcov_man = curve_fit(straight_line, fit_log_xs, fit_log_ys_man, sigma = err_log_man)
#b
b_q_approx = popt_q_approx[-1]
b_q = popt_q[-1]
b_man = popt_man[-1]
#errors on b
err_b_approx = np.sqrt(np.diag(pcov_q_approx))[-1]
err_b_q = np.sqrt(np.diag(pcov_q))[-1]
err_b_man = np.sqrt(np.diag(pcov_man))[-1]
x_fit = np.linspace(N_quimb[0], N_quimb[-1], 100) #put the plot range here
```
```{python}
fig, ax = plt.subplots(1, 2, figsize=(6.68, 2.35)) #the first parameter is the width fraction. .45 = half-page (spans one column), .95 = full-page (spans both columns) (accounting for a .05 margin)
# create a color palette
palette = plt.get_cmap('Set2')
ax[0].set_ylim(1e-4, 5)
ax[1].set_ylim(1e-4, 5)
#Comparison of "approximated" computations of QFT
ax[0].plot(N_quimb, times_quimb_approx[:, 0], color=palette(1), linestyle=':', label='quimb')
ax[0].fill_between(N_quimb, times_quimb_approx[:,0]-times_quimb_approx[:,1],
times_quimb_approx[:,0]+times_quimb_approx[:,1],
color=palette(1), alpha=0.5)
ax[0].plot(N_quimb, times_manual_chi[:, 0], color=palette(0), linestyle='-.', label='manual')
ax[0].fill_between(N_quimb, times_manual_chi[:,0]-times_manual_chi[:,1],
times_manual_chi[:,0]+times_manual_chi[:,1],
color=palette(0), alpha=0.4)
#Fit
ax[0].plot(x_fit, 10**(straight_line(np.log10(x_fit), *popt_q_approx)), '--r',
linewidth=0.8, label=f'$b=({np.round(b_q_approx, 1)}\\pm{np.round(err_b_approx, 2)})$')
ax[0].plot(x_fit, 10**(straight_line(np.log10(x_fit), *popt_man)), '--g',
linewidth=0.8, label=f'$b=({np.round(b_man, 1)}\\pm{np.round(err_b_man, 2)})$')
ax[0].set_ylabel('Time [s]')
ax[0].set_xlabel('Number of qubits')
ax[0].set_title('Time scaling for QFT - $\chi=2$')
ax[0].legend(loc='best')
ax[0].loglog()
#Comparison of "full" computations of QFT
ax[1].plot(N_quimb, times_quimb_full[:, 0], color=palette(1), linestyle=':', label='quimb')
ax[1].fill_between(N_quimb, times_quimb_full[:,0]-times_quimb_full[:,1],
times_quimb_full[:,0]+times_quimb_full[:,1],
color=palette(1), alpha=0.5)
ax[1].plot(N_manual, times_manual_full[:, 0], color=palette(0), linestyle='-.', label='manual')
ax[1].fill_between(N_manual, times_manual_full[:,0]-times_manual_full[:,1],
times_manual_full[:,0]+times_manual_full[:,1],
color=palette(0), alpha=0.4)
#Fit
ax[1].plot(x_fit, 10**(straight_line(np.log10(x_fit), *popt_q)), '--r',
linewidth=0.8, label=f'$b=({np.round(b_q, 1)}\\pm{np.round(err_b_q, 2)})$')
#ax[1].set_ylabel('Time [s]')
ax[1].set_xlabel('Number of qubits')
ax[1].set_title('Time scaling for QFT - $\chi=2^{\\left \\lfloor n/2 \\right \\rfloor}$')
ax[1].legend(loc='lower right')
ax[1].loglog()
ticks = [4,5,6,7,8,9,10,16]
ax[0].set_xticks(ticks)
ax[1].set_xticks(ticks)
ax[0].set_xticklabels(['${}$'.format(l) for l in ticks])
ax[1].set_xticklabels(['${}$'.format(l) for l in ticks])
ax[0].get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax[1].get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax[0].set_xlim(5,16)
ax[1].set_xlim(5,16)
plt.show()
fig.tight_layout()
plt.savefig("time_scaling.pgf")
```
## Testing bond dimension $\chi$
### Different $\chi$ for manual method
```{python}
chis = np.array([2**i for i in range(2,6)])
Ns = np.arange(4, 17, dtype=int)
time_chis = np.zeros( (len(chis), len(Ns), 2) )
for i, x in enumerate(tqdm(chis)):
for j, N in enumerate(Ns):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(N)
mps = [s.data for s in state]
state = [mps[0]] + [s.transpose(0,2,1) for s in mps[1:-1]] + [mps[-1]]
for _ in range(50):
start = time()
result = qft_circuit_swap_approx(state, N, chi=x)
#result = to_dense(result).flatten()
times.append( time()-start )
time_chis[i, j, :] = ([np.mean(times), np.std(times) ])
```
### Different $\chi$ for quimb implementation
```{python}
time_chis_quimb = np.zeros( (len(chis), len(Ns), 2) )
for i, x in enumerate(tqdm(chis)):
for j, n in enumerate(Ns):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
for _ in range(50):
start = time()
qc = QuantumCircuit(n)
qft_circuit_qiskit(qc, n)
psi0 = MPS_circ(qc, gates, init_state=state, chi=x)
#psi_dense = psi0.to_dense()
times.append( time()-start )
time_chis_quimb[i, j, :] = ([np.mean(times), np.std(times) ])
```
#### Save/load data
```{python}
np.save(".\\data\\time_chis_quimb", time_chis_quimb)
np.save(".\\data\\time_chis", time_chis)
time_chis = np.load(".\\data\\time_chis.npy")
time_chis_quimb = np.load(".\\data\\time_chis_quimb.npy")
chis = np.array([2**i for i in range(2,6)])
Ns = np.arange(4, 17, dtype=int)
N_list = np.array( [8, 16] )
idx_N = N_list - 4
chi_x = np.array([2**i for i in range(1,6)])
```
```{python}
y_man = time_chis.transpose(1,0,2)
y_q = time_chis_quimb.transpose(1,0,2)
y_man = np.append(times_manual_chi.reshape(1,13,2).transpose(1,0,2), y_man, axis=1)
y_q = np.append(times_quimb_approx.reshape(1,13,2).transpose(1,0,2), y_q, axis=1)
```
```{python}
fig, ax = plt.subplots(1, 2, figsize=(6.68, 2.20)) #the first parameter is the width fraction. .45 = half-page (spans one column), .95 = full-page (spans both columns) (accounting for a .05 margin)
#Manual implementation
for i in range(len(N_list)):
ax[0].plot(chi_x, y_man[idx_N[i], :, 0], label='$n='+str(N_list[i])+'$',
color=palette(i+2))#, alpha=0.2*(len(chis)-i))
ax[0].fill_between(chi_x, y_man[idx_N[i], :, 0]-y_man[idx_N[i], :, 1],
y_man[idx_N[i], :, 0]+y_man[idx_N[i], :, 1],
color=palette(i+2), alpha=0.1*(len(chis)-i))
ax[0].set_ylabel('Time [s]')
ax[0].set_xlabel('Bond dimension $\chi$')
ax[0].set_title('Manual QFT circuit')
ax[0].legend(loc='best')
ax[0].loglog()
#Quimb implementation
for i in range(len(N_list)):
ax[1].plot(chi_x, y_q[idx_N[i], :, 0], label='$n='+str(N_list[i])+'$',
color=palette(i+2))
ax[1].fill_between(chi_x, y_q[idx_N[i], :, 0]-y_q[idx_N[i], :, 1],
y_q[idx_N[i], :, 0]+y_q[idx_N[i], :, 1],
color=palette(i+2), alpha=0.1*(len(chis)-i))
ax[1].set_xlabel('Bond dimension $\chi$')
ax[1].set_title('quimb QFT circuit')
ax[1].legend(loc='best', )
ax[1].loglog()
plt.show()
fig.tight_layout()
plt.savefig("chi_scaling.pgf")
```
## Testing maximum number of Qubits
### Manual implementation - $\chi=2$
```{python}
#run QFT on different number of qubits, store execution times
#manual implementation with bond dimension chi fixed to 2
N_man_tot = np.arange(4, 26, dtype=int)
times_manual_tot = np.zeros( (len(N_man_tot), 2) )
for i,n in enumerate(tqdm(N_man_tot)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
mps = [s.data for s in state]
state = [mps[0]] + [s.transpose(0,2,1) for s in mps[1:-1]] + [mps[-1]]
for _ in range(10):
start = time()
result = qft_circuit_swap_approx(state, n, chi=2)
#result = to_dense(result).flatten()
times.append( time()-start )
times_manual_tot[i,:] = ( [np.mean(times), np.std(times) ])
```
### Quimb - authomatic $\chi$
```{python}
#run QFT on different number of qubits, store execution times
#quimb implementation with authomatic choice of bond dimension
N_tot = np.arange(4, 51, dtype=int)
times_quimb_auto = np.zeros( (len(N_tot), 2) )
for i, n in enumerate(tqdm(N_tot)):
times = []
#GHZ initial state
state = quimb.tensor.tensor_gen.MPS_ghz_state(n)
for _ in range(10):
start = time()
qc = QuantumCircuit(n)
qft_circuit_qiskit(qc, n)
psi0 = MPS_circ(qc, gates, init_state=state)
#psi_dense = psi0.to_dense()
times.append( time()-start )
times_quimb_auto[i, :] = ([np.mean(times), np.std(times) ])
```
### Qiskit
```{python}
#run QFT on different number of qubits, store execution times
#qiskit implementation
N_qiskit = np.arange(4, 26, dtype=int)
times_qiskit = np.zeros( (len(N_qiskit), 2) )
for i, n in enumerate(tqdm(N_qiskit)):
times = []
#GHZ initial state
state = get_ghz_simple(n, measure=False)
for _ in range(10):
start = time()
#QFT circuit
qc = QuantumCircuit(n)
qft_circuit_qiskit(qc, n)
#combine the two circuits
qc = state + qc
# Select the QasmSimulator from the Aer provider
simulator = Aer.get_backend('qasm_simulator')
# Execute
result = execute(qc, simulator, shots=1).result()
times.append( time()-start )
times_qiskit[i, :] = ([np.mean(times), np.std(times) ])
```
### Cirq
```{python}
def cphase_swap_cirq(ctrl, target, phase):
yield cirq.CZ(ctrl, target) ** phase
yield cirq.SWAP(ctrl, target)
def qft_circuit_cirq(qubits, circuit=[]):
"""
Build a circuit implementing the QFT algorithm on the given @qubits.
The order of @qubits is preserved by SWAP operations.
Implemented using only local operations, i.e. gates acting on neighbouring qubits.
Adapted from: https://github.com/quantumlib/Cirq/blob/master/examples/quantum_fourier_transform.py and extended to
n generic qubits through recursion.
"""
n = len(qubits)
assert n > 0, "Number of qubits must be > 0"
if (n == 1):
circuit.append(cirq.H(qubits[0]))
return cirq.Circuit(circuit, strategy=cirq.InsertStrategy.EARLIEST)
else:
circuit.append(cirq.H(qubits[0]))
circuit.extend(cphase_swap_cirq(qubits[i], qubits[i+1], 1/2**(i+1)) for i in range(n-1))
return qft_circuit_cirq(qubits[:n-1], circuit)
```
```{python}
#run QFT on different number of qubits, store execution times
#qiskit implementation
N_cirq = np.arange(4, 26, dtype=int)
times_cirq = np.zeros( (len(N_cirq), 2) )
for i, n in enumerate(tqdm(N_cirq)):
times = []
#GHZ initial state
state = np.zeros(2**n)
state[0] = 1
state[-1] = 1
state = state / np.sqrt(2)
for _ in range(10):
start = time()
#QFT circuit
qubits = cirq.LineQubit.range(n)
qc = qft_circuit_cirq(qubits, [])
simulator = cirq.Simulator()
result = simulator.simulate(qc, initial_state=state)
times.append( time()-start )
times_cirq[i, :] = ([np.mean(times), np.std(times) ])
```
#### Save/load data
```{python}
# np.save("times_quimb_auto", times_quimb_auto)
# np.save("times_manual_tot", times_manual_tot)
# np.save("times_cirq", times_cirq)
# np.save("times_qiskit", times_qiskit)
times_quimb_auto = np.load(".\\data\\times_quimb_auto.npy")
times_manual_tot = np.load(".\\data\\times_manual_tot.npy")
times_cirq = np.load(".\\data\\times_cirq.npy")
times_qiskit = np.load(".\\data\\times_qiskit.npy")
N_tot = np.arange(4, 51, dtype=int)
N_man_tot = np.arange(4, 26, dtype=int)
N_cirq = np.arange(4, 26, dtype=int)
N_qiskit = np.arange(4, 26, dtype=int)
```
```{python}
#Data to be fit is in xs and ys
from scipy.optimize import curve_fit
from scipy import stats
def straight_line(x, a, b):
return a + b*x
fit_log_xs = np.log10(N_tot) #Move to log-log space
#mask
mask = fit_log_xs > np.log10(6)
fit_log_xs = fit_log_xs[mask]
fit_q_tot = np.log10(times_quimb_auto[mask,0])
popt_q_tot, pcov_tot = curve_fit(straight_line, fit_log_xs, fit_q_tot)
#b
b_q_tot = popt_q_tot[-1]
err_b_tot = np.sqrt(np.diag(pcov_tot))[-1]
x_fit = np.linspace(N_tot[0], N_tot[-1], 100) #put the plot range here
```
```{python}
fig, ax = plt.subplots(figsize=get_figsize(0.95)) #the first parameter is the width fraction. .45 = half-page (spans one column), .95 = full-page (spans both columns) (accounting for a .05 margin)
#quimb implementation
plt.plot(N_tot, times_quimb_auto[:, 0], color=palette(1), linestyle=':', label='quimb')
plt.fill_between(N_tot, times_quimb_auto[:,0]-times_quimb_auto[:,1],
times_quimb_auto[:,0]+times_quimb_auto[:,1],
color=palette(1), alpha=0.6)
#manual implementation
plt.plot(N_man_tot, times_manual_tot[:, 0], color=palette(0), linestyle='-.', label='manual, $\chi=2$')
plt.fill_between(N_man_tot, times_manual_tot[:,0]-times_manual_tot[:,1],
times_manual_tot[:,0]+times_manual_tot[:,1],
color=palette(0), alpha=0.6)
#cirq
plt.plot(N_cirq, times_cirq[:, 0], color='plum', label='cirq', alpha=0.8)
plt.fill_between(N_cirq, times_cirq[:,0]-times_cirq[:,1],
times_cirq[:,0]+times_cirq[:,1],
color='thistle', alpha=0.6)
#qiskit
plt.plot(N_qiskit, times_qiskit[:, 0], color='cadetblue', label='qiskit', alpha=0.8)
plt.fill_between(N_qiskit, times_qiskit[:,0]-times_qiskit[:,1],
times_qiskit[:,0]+times_qiskit[:,1],
color='paleturquoise', alpha=0.6)
#Fit
plt.plot(x_fit, 10**(straight_line(np.log10(x_fit), *popt_q_tot)), '--r',
linewidth=0.8, label=f'$b=({np.round(b_q_tot, 2)}\\pm{np.round(err_b_tot, 2)})$')
plt.ylabel('Time [s]')
plt.xlabel('Number of qubits')
plt.title('Time scaling for QFT circuit')
plt.legend(loc='best')
plt.loglog()
plt.show()
fig.tight_layout()
plt.savefig("max_n_qubits.pgf") #Save as pdf in the "report_plots" folder
```
```{python}
```
```{python}
```