forked from xypan1232/iDeepS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructure_motifs.py
518 lines (422 loc) · 15.9 KB
/
structure_motifs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#!/usr/bin/env python
from optparse import OptionParser
import copy, os, pdb, random, shutil, subprocess, time
import h5py
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import spearmanr
import seaborn as sns
from sklearn import preprocessing
import dna_io
################################################################################
# basset_motifs.py
#
# Collect statistics and make plots to explore the first convolution layer
# of the given model using the given sequences.
################################################################################
#weblogo_opts = '-X NO -Y NO --errorbars NO --fineprint ""'
weblogo_opts = '-X NO --fineprint ""'
weblogo_opts += ' -C "#CB2026" S S'
weblogo_opts += ' -C "#34459C" M M'
weblogo_opts += ' -C "#FBB116" H H'
weblogo_opts += ' -C "#0C8040" I I'
weblogo_opts += ' -C "#FCC116" B B'
weblogo_opts += ' -C "#0B8040" E E'
def load_data(path):
"""
Load data matrices from the specified folder.
"""
data = dict()
data["Y"] = np.loadtxt(gzip.open(os.path.join(path,
"matrix_Response.tab.gz")),
skiprows=1)
def get_motif_proteins(meme_db_file):
''' Hash motif_id's to protein names using the MEME DB file '''
motif_protein = {}
for line in open(meme_db_file):
a = line.split()
if len(a) > 0 and a[0] == 'MOTIF':
if a[2][0] == '(':
motif_protein[a[1]] = a[2][1:a[2].find(')')]
else:
motif_protein[a[1]] = a[2]
return motif_protein
def info_content(pwm, transpose=False, bg_gc=0.415):
''' Compute PWM information content.
In the original analysis, I used a bg_gc=0.5. For any
future analysis, I ought to switch to the true hg19
value of 0.415.
'''
pseudoc = 1e-9
if transpose:
pwm = np.transpose(pwm)
bg_pwm = [1-bg_gc, bg_gc, bg_gc, 1-bg_gc]
ic = 0
for i in range(pwm.shape[0]):
for j in range(4):
# ic += 0.5 + pwm[i][j]*np.log2(pseudoc+pwm[i][j])
ic += -bg_pwm[j]*np.log2(bg_pwm[j]) + pwm[i][j]*np.log2(pseudoc+pwm[i][j])
return ic
def make_filter_pwm(filter_fasta):
''' Make a PWM for this filter from its top hits SMHITF'''
nts = {'F':0, 'T':1, 'I':2, 'H':3, 'M':4, 'S':5}
#nts = {'A':0, 'C':1, 'G':2, 'U':3}
pwm_counts = []
nsites = 6 # pseudocounts
for line in open(filter_fasta):
if line[0] != '>':
seq = line.rstrip()
nsites += 1
if len(pwm_counts) == 0:
# initialize with the length
for i in range(len(seq)):
pwm_counts.append(np.array([1.0]*6))
# count
for i in range(len(seq)):
try:
pwm_counts[i][nts[seq[i]]] += 1
except KeyError:
pwm_counts[i] += np.array([0.16]*6)
# normalize
pwm_freqs = []
for i in range(len(pwm_counts)):
pwm_freqs.append([pwm_counts[i][j]/float(nsites) for j in range(6)])
return np.array(pwm_freqs), nsites-6
def meme_add(meme_out, f, filter_pwm, nsites, trim_filters=False):
''' Print a filter to the growing MEME file
Attrs:
meme_out : open file
f (int) : filter index #
filter_pwm (array) : filter PWM array
nsites (int) : number of filter sites
'''
if not trim_filters:
ic_start = 0
ic_end = filter_pwm.shape[0]-1
else:
ic_t = 0.2
# trim PWM of uninformative prefix
ic_start = 0
while ic_start < filter_pwm.shape[0] and info_content(filter_pwm[ic_start:ic_start+1]) < ic_t:
ic_start += 1
# trim PWM of uninformative suffix
ic_end = filter_pwm.shape[0]-1
while ic_end >= 0 and info_content(filter_pwm[ic_end:ic_end+1]) < ic_t:
ic_end -= 1
if ic_start < ic_end:
print >> meme_out, 'MOTIF filter%d' % f
print >> meme_out, 'letter-probability matrix: alength= 6 w= %d nsites= %d' % (ic_end-ic_start+1, nsites)
for i in range(ic_start, ic_end+1):
print >> meme_out, '%.4f %.4f %.4f %.4f %.4f %.4f' % tuple(filter_pwm[i])
print >> meme_out, ''
def meme_intro(meme_file, seqs):
''' Open MEME motif format file and print intro
Attrs:
meme_file (str) : filename
seqs [str] : list of strings for obtaining background freqs
Returns:
mem_out : open MEME file
SMHITF
'''
#nts = {'A':0, 'C':1, 'G':2, 'U':3}
nts = {'F':0, 'T':1, 'I':2, 'H':3, 'M':4, 'S':5}
# count
nt_counts = [1]*6
for i in range(len(seqs)):
for nt in seqs[i]:
try:
nt_counts[nts[nt]] += 1
except KeyError:
pass
# normalize
nt_sum = float(sum(nt_counts))
nt_freqs = [nt_counts[i]/nt_sum for i in range(6)]
# open file for writing
meme_out = open(meme_file, 'w')
# print intro material
print >> meme_out, 'MEME version 4'
print >> meme_out, ''
print >> meme_out, 'ALPHABET= FTIHMS'
print >> meme_out, ''
print >> meme_out, 'Background letter frequencies:'
print >> meme_out, 'F %.4f T %.4f I %.4f H %.4f M %.4f S %.4f' % tuple(nt_freqs)
print >> meme_out, ''
return meme_out
def name_filters(num_filters, tomtom_file, meme_db_file):
''' Name the filters using Tomtom matches.
Attrs:
num_filters (int) : total number of filters
tomtom_file (str) : filename of Tomtom output table.
meme_db_file (str) : filename of MEME db
Returns:
filter_names [str] :
'''
# name by number
filter_names = ['f%d'%fi for fi in range(num_filters)]
# name by protein
if tomtom_file is not None and meme_db_file is not None:
motif_protein = get_motif_proteins(meme_db_file)
# hash motifs and q-value's by filter
filter_motifs = {}
tt_in = open(tomtom_file)
tt_in.readline()
for line in tt_in:
a = line.split()
fi = int(a[0][6:])
motif_id = a[1]
qval = float(a[5])
filter_motifs.setdefault(fi,[]).append((qval,motif_id))
tt_in.close()
# assign filter's best match
for fi in filter_motifs:
top_motif = sorted(filter_motifs[fi])[0][1]
filter_names[fi] += '_%s' % motif_protein[top_motif]
return np.array(filter_names)
################################################################################
# plot_target_corr
#
# Plot a clustered heatmap of correlations between filter activations and
# targets.
#
# Input
# filter_outs:
# filter_names:
# target_names:
# out_pdf:
################################################################################
def plot_target_corr(filter_outs, seq_targets, filter_names, target_names, out_pdf, seq_op='mean'):
num_seqs = filter_outs.shape[0]
num_targets = len(target_names)
if seq_op == 'mean':
filter_outs_seq = filter_outs.mean(axis=2)
else:
filter_outs_seq = filter_outs.max(axis=2)
# std is sequence by filter.
filter_seqs_std = filter_outs_seq.std(axis=0)
filter_outs_seq = filter_outs_seq[:,filter_seqs_std > 0]
filter_names_live = filter_names[filter_seqs_std > 0]
filter_target_cors = np.zeros((len(filter_names_live),num_targets))
for fi in range(len(filter_names_live)):
for ti in range(num_targets):
cor, p = spearmanr(filter_outs_seq[:,fi], seq_targets[:num_seqs,ti])
filter_target_cors[fi,ti] = cor
cor_df = pd.DataFrame(filter_target_cors, index=filter_names_live, columns=target_names)
sns.set(font_scale=0.3)
plt.figure()
sns.clustermap(cor_df, cmap='BrBG', center=0, figsize=(8,10))
plt.savefig(out_pdf)
plt.close()
################################################################################
# plot_filter_seq_heat
#
# Plot a clustered heatmap of filter activations in
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
def plot_filter_seq_heat(filter_outs, out_pdf, whiten=True, drop_dead=True):
# compute filter output means per sequence
filter_seqs = filter_outs.mean(axis=2)
# whiten
if whiten:
filter_seqs = preprocessing.scale(filter_seqs)
# transpose
filter_seqs = np.transpose(filter_seqs)
if drop_dead:
filter_stds = filter_seqs.std(axis=1)
filter_seqs = filter_seqs[filter_stds > 0]
# downsample sequences
seqs_i = np.random.randint(0, filter_seqs.shape[1], 500)
hmin = np.percentile(filter_seqs[:,seqs_i], 0.1)
hmax = np.percentile(filter_seqs[:,seqs_i], 99.9)
sns.set(font_scale=0.3)
plt.figure()
sns.clustermap(filter_seqs[:,seqs_i], row_cluster=True, col_cluster=True, linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax)
plt.savefig(out_pdf)
#out_png = out_pdf[:-2] + 'ng'
#plt.savefig(out_png, dpi=300)
plt.close()
################################################################################
# plot_filter_seq_heat
#
# Plot a clustered heatmap of filter activations in sequence segments.
#
# Mean doesn't work well for the smaller segments for some reason, but taking
# the max looks OK. Still, similar motifs don't cluster quite as well as you
# might expect.
#
# Input
# filter_outs
################################################################################
def plot_filter_seg_heat(filter_outs, out_pdf, whiten=True, drop_dead=True):
b = filter_outs.shape[0]
f = filter_outs.shape[1]
l = filter_outs.shape[2]
s = 5
while l/float(s) - (l/s) > 0:
s += 1
print '%d segments of length %d' % (s,l/s)
# split into multiple segments
filter_outs_seg = np.reshape(filter_outs, (b, f, s, l/s))
# mean across the segments
filter_outs_mean = filter_outs_seg.max(axis=3)
# break each segment into a new instance
filter_seqs = np.reshape(np.swapaxes(filter_outs_mean, 2, 1), (s*b, f))
# whiten
if whiten:
filter_seqs = preprocessing.scale(filter_seqs)
# transpose
filter_seqs = np.transpose(filter_seqs)
if drop_dead:
filter_stds = filter_seqs.std(axis=1)
filter_seqs = filter_seqs[filter_stds > 0]
# downsample sequences
seqs_i = np.random.randint(0, filter_seqs.shape[1], 500)
hmin = np.percentile(filter_seqs[:,seqs_i], 0.1)
hmax = np.percentile(filter_seqs[:,seqs_i], 99.9)
sns.set(font_scale=0.3)
if whiten:
dist = 'euclidean'
else:
dist = 'cosine'
plt.figure()
sns.clustermap(filter_seqs[:,seqs_i], metric=dist, row_cluster=True, col_cluster=True, linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax)
plt.savefig(out_pdf)
#out_png = out_pdf[:-2] + 'ng'
#plt.savefig(out_png, dpi=300)
plt.close()
################################################################################
# filter_motif
#
# Collapse the filter parameter matrix to a single DNA motif.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
def filter_motif(param_matrix):
nts = 'FTIHMS'
motif_list = []
for v in range(param_matrix.shape[1]):
max_n = 0
for n in range(1,6):
if param_matrix[n,v] > param_matrix[max_n,v]:
max_n = n
if param_matrix[max_n,v] > 0:
motif_list.append(nts[max_n])
else:
motif_list.append('N')
return ''.join(motif_list)
################################################################################
# filter_possum
#
# Write a Possum-style motif
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
def filter_possum(param_matrix, motif_id, possum_file, trim_filters=False, mult=200):
# possible trim
trim_start = 0
trim_end = param_matrix.shape[1]-1
trim_t = 0.3
if trim_filters:
# trim PWM of uninformative prefix
while trim_start < param_matrix.shape[1] and np.max(param_matrix[:,trim_start]) - np.min(param_matrix[:,trim_start]) < trim_t:
trim_start += 1
# trim PWM of uninformative suffix
while trim_end >= 0 and np.max(param_matrix[:,trim_end]) - np.min(param_matrix[:,trim_end]) < trim_t:
trim_end -= 1
if trim_start < trim_end:
possum_out = open(possum_file, 'w')
print >> possum_out, 'BEGIN GROUP'
print >> possum_out, 'BEGIN FLOAT'
print >> possum_out, 'ID %s' % motif_id
print >> possum_out, 'AP DNA'
print >> possum_out, 'LE %d' % (trim_end+1-trim_start)
for ci in range(trim_start,trim_end+1):
print >> possum_out, 'MA %s' % ' '.join(['%.2f'%(mult*n) for n in param_matrix[:,ci]])
print >> possum_out, 'END'
print >> possum_out, 'END'
possum_out.close()
################################################################################
# plot_filter_heat
#
# Plot a heatmap of the filter's parameters.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:ftihms
################################################################################
def plot_filter_heat(param_matrix, out_pdf):
param_range = abs(param_matrix).max()
sns.set(font_scale=2)
plt.figure(figsize=(param_matrix.shape[1], 4))
sns.heatmap(param_matrix, cmap='PRGn', linewidths=0.2, vmin=-param_range, vmax=param_range)
ax = plt.gca()
ax.set_xticklabels(range(1,param_matrix.shape[1]+1))
ax.set_yticklabels('SMHITF', rotation='horizontal') # , size=10)
plt.savefig(out_pdf)
plt.close()
################################################################################
# plot_filter_logo
#
# Plot a weblogo of the filter's occurrences
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
#weblogo -X NO -Y NO --errorbars NO --fineprint "" -C "#CB2026" A A -C "#34459C" C C -C "#FBB116" G G -C "#0C8040" T T <filter1_logo.fa >filter1.eps
################################################################################
def plot_filter_logo(filter_outs, filter_size, seqs, out_prefix, raw_t=0, maxpct_t=None):
if maxpct_t:
all_outs = np.ravel(filter_outs)
all_outs_mean = all_outs.mean()
all_outs_norm = all_outs - all_outs_mean
raw_t = maxpct_t * all_outs_norm.max() + all_outs_mean
# print fasta file of positive outputs
filter_fasta_out = open('%s.fa' % out_prefix, 'w')
filter_count = 0
for i in range(filter_outs.shape[0]):
for j in range(filter_outs.shape[1]):
if filter_outs[i,j] > raw_t:
kmer = seqs[i][j:j+filter_size]
if len(kmer) <filter_size:
continue
print >> filter_fasta_out, '>%d_%d' % (i,j)
print >> filter_fasta_out, kmer
filter_count += 1
filter_fasta_out.close()
print 'plot logo'
# make weblogo
if filter_count > 0:
weblogo_cmd = 'weblogo %s < %s.fa > %s.eps' % (weblogo_opts, out_prefix, out_prefix)
subprocess.call(weblogo_cmd, shell=True)
################################################################################
# plot_score_density
#
# Plot the score density and print to the stats table.
#
# Input
# param_matrix: np.array of the filter's parameter matrix
# out_pdf:
################################################################################
def plot_score_density(f_scores, out_pdf):
sns.set(font_scale=1.3)
plt.figure()
sns.distplot(f_scores, kde=False)
plt.xlabel('ReLU output')
plt.savefig(out_pdf)
plt.close()
return f_scores.mean(), f_scores.std()
################################################################################
# __main__
################################################################################
if __name__ == '__main__':
main()
#pdb.runcall(main)