-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAFL.py
139 lines (114 loc) · 5.45 KB
/
AFL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from ChatBot import ChatBot
import torch
import torch.nn.functional as F
import numpy as np
import random
import requests
import json
class AFL:
count=0
changed_flag=False
def __init__(self, model, tokenizer,name):
self.model = model
self.tokenizer= tokenizer
self.score=[]
# self.contents =contents
self.name = name
self.answer=[]
def return_prediction(self,chatbot,sample_json):
if self.name == "MRPC":
sen_1 = sample_json['text']
out_put= []
# personalities=["may i help you yes please.", "do you have long - sleeve shirts?", "yes", "they are right here. how much are they? ","they are 15 dollars each do you have any larger sizes what about these?", "there are larger and more colorful.", "this one looks good. can i try this on? sure." ,"the fitting room is over there.", "what do you think? that looks really good on you", "thanks.", "i will take this"]
classes = ["not paraphrase", "is paraphrase"]
for i in chatbot.contents:
sequence_persona=i
paraphrase = self.tokenizer.encode_plus(sen_1, sequence_persona, return_tensors="pt")
paraphrase_classification_logits = self.model(**paraphrase)[0]
paraphrase_results = torch.softmax(paraphrase_classification_logits, dim=1).tolist()[0]
out_put.append(paraphrase_results[1])
out_put=np.array(out_put)
out_put_max=np.max(out_put)
self.score.append(round(out_put_max*100))
results = {"max_value":round(out_put_max*100)}
return round(out_put_max*100)
elif self.name == "CoLA":
sen_1 = sample_json['text']
classes = ["wrong", "correct"]
paraphrase = self.tokenizer.encode_plus(sen_1, return_tensors="pt")
paraphrase_classification_logits = self.model(**paraphrase)[0]
paraphrase_results = torch.softmax(paraphrase_classification_logits, dim=1).tolist()[0]
self.score.append(round(paraphrase_results[1] * 100))
print(self.score)
return round(paraphrase_results[1] * 100)
elif self.name =='Redundancy':
sen_1 =sample_json
out_put= []
out_put_max=0
classes = ["not paraphrase", "is paraphrase"]
if len(self.answer) > 0 :
for i in self.answer:
paraphrase = self.tokenizer.encode_plus(sen_1, i, return_tensors="pt")
paraphrase_classification_logits = self.model(**paraphrase)[0]
paraphrase_results = torch.softmax(paraphrase_classification_logits, dim=1).tolist()[0]
out_put.append(paraphrase_results[1])
out_put=np.array(out_put)
out_put_max=np.max(out_put)
self.score.append(round(out_put_max*100))
self.answer.append(sen_1)
print(self.answer)
return round(out_put_max*100)
# if AFL.count==10:
# avg =average(self.score,AFL.count)
# return avg
results = {"max_value":round(out_put_max*100)}
return round(out_put_max*100)
def spell_check(x,KEY,PARAM,HEADER):
api_key = KEY
example_text = x['text'] # the text to be spell-checked
endpoint = "https://api.cognitive.microsoft.com/bing/v7.0/SpellCheck"
data = {'text': example_text}
params = PARAM
headers = HEADER
response = requests.post(endpoint, headers=headers, params=params, data=data)
result=[]
json_response = response.json()
if json_response['flaggedTokens']:
for i in range(0,len(json_response['flaggedTokens'])):
max=0
max_word=''
for j in range(0,len(json_response['flaggedTokens'][i]['suggestions'])):
if max < json_response['flaggedTokens'][i]['suggestions'][j]['score']:
max = json_response['flaggedTokens'][i]['suggestions'][j]['score']
max_word=json_response['flaggedTokens'][i]['suggestions'][j]['suggestion']
result.append(f"{json_response['flaggedTokens'][i]['token']}-->{max_word}")
print(f"AFL{result}")
return result
def average(self):
return sum(self.score)/AFL.count
@classmethod
def change_content(cls,chatbot ,book):
# # CoLA_avg = CoLA.average()
# # MRPC_avg = MRPC.average()
# # sent_redunancy = Redundancy.redundancy_rate(sentece['text'])
# print(CoLA_avg,MRPC_avg)
# personality =chatbot.personality
# if CoLA_avg >80 and MRPC_avg > 70 and AFL.changed_flag ==False :
originPersonality=chatbot.personality
contents=[]
NewChapter=""
NewPersonality = random.choice(chatbot.personalities)
while NewPersonality[0] in originPersonality:
NewPersonality = random.choice(chatbot.personalities)
for i in NewPersonality:
contents.append(chatbot.tokenizer.decode(i))
for unit, pers in book.items():
if NewPersonality[0] in pers:
NewChapter = unit
AFL.changed_flag=True
print(chatbot.contents)
print('_____________')
print(contents)
chatbot.contents = contents
chatbot.chapter = NewChapter
return NewPersonality