-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathafl_test.py
300 lines (226 loc) · 9.52 KB
/
afl_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#%%
from AFL import AFL
from ChatBot import ChatBot
import grammer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from easydict import EasyDict as edict
import random
import torch
from transformers import GPT2LMHeadModel,GPT2Tokenizer
from train import add_special_tokens_
from utils import PERSONACHAT_URL, get_dataset, download_pretrained_model
import json
import pickle
import os
from pprint import pprint
from tqdm import tqdm
import numpy as np
with open("data/persona_history.json") as fp:
history_json = json.load(fp)
# pickle load
def pickle_load(path: str):
with open(path, "rb") as f:
data = pickle.load(f)
return data
def pickle_save(path: str, data) -> None:
with open(path, "wb") as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
def decode(tokens):
return [tokenizer.decode(token) for token in tokens]
mrpc_models = [
"bert-base-cased-finetuned-mrpc",
"textattack/roberta-base-MRPC",
"textattack/facebook-bart-large-MRPC",
"textattack/xlnet-base-cased-MRPC"
# "textattack/albert-base-v2-MRPC",
]
cola_models = [
"textattack/facebook-bart-large-CoLA",
"textattack/distilbert-base-uncased-CoLA",
"textattack/bert-base-uncased-CoLA",
"textattack/roberta-base-CoLA",
# "textattack/albert-base-v2-CoLA"
]
args = edict(
{
"model": "gpt2",
"dataset_path": "./data/personachat_self_original.json",
"dataset_cache": "./cache.tar.gz_GPT2Tokenizer",
"persona_cache": "cache/persona_cache",
"history_cache": "cache/history_cache",
"model_checkpoint": "./runs/train_6cans3",
"temperature": 1.9,
"top_k": 180,
"top_p": 0.1,
"max_history": 2,
"device": "cuda" if torch.cuda.is_available() else "cpu",
"no_sample": True,
"max_length": 20,
"min_length": 1,
"seed": 0,
}
)
if args.model_checkpoint == "":
if args.model == "gpt2":
raise ValueError("Interacting with GPT2 requires passing a finetuned model_checkpoint")
else:
args.model_checkpoint = download_pretrained_model()
if args.seed != 0:
random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Get pretrained model and tokenizer
tokenizer_class, model_class = GPT2Tokenizer, GPT2LMHeadModel
tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint)
model = model_class.from_pretrained(args.model_checkpoint)
model.to(args.device)
add_special_tokens_(model, tokenizer)
# mrpc_tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
# mrpc_model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc")
# cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
# cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
# Get Dataset, Persoan, History
dataset = get_dataset(tokenizer, args.dataset_path, args.dataset_cache)
if args.persona_cache and os.path.isfile(args.persona_cache):
personalities = pickle_load(args.persona_cache)
else:
personalities = [dialog["personality"] for dataset in dataset.values() for dialog in dataset]
pickle_save(path="./cache/persona_cache", data=personalities)
if args.history_cache and os.path.isfile(args.history_cache):
history = pickle_load(args.history_cache)
else:
history = [ dialog["utterances"][-1]["history"] for dataset in dataset.values() for dialog in dataset ]
pickle_save(path="./cache/history_cache", data=history)
utterances = [ dialog["utterances"] for dataset in dataset.values() for dialog in dataset ]
# Select the shuffled persona and history
shuffle_idx = random.choice(range(len(personalities)))
personality = personalities[shuffle_idx]
utterance = utterances[shuffle_idx]
gold_history = history[shuffle_idx]
gold_history = [tokenizer.decode(line) for line in gold_history]
personality_decoded = decode(personality)
print(f"PERSONA:{personality_decoded}")
chatbot = ChatBot(args, tokenizer, model)
MRPC = AFL(model_name = "bert-base-cased-finetuned-mrpc", task = "MRPC")
CoLA = AFL(model_name = "textattack/roberta-base-CoLA", task = "CoLA")
# Redundancy = AFL(mrpc_model, mrpc_tokenizer, "Redundancy")
# def
def shuffle_inputs(personalities: list, utterances: list, history: list):
shuffle_idx = random.choice(range(len(personalities)))
personality = personalities[shuffle_idx]
utterance = utterances[shuffle_idx]
gold_history = history[shuffle_idx]
gold_history = [tokenizer.decode(line) for line in gold_history]
return personality, utterance, gold_history
def pseudo_code(personalities, utterances, history, models):
PERSONA_FLAG = False
personality, utterance, gold_history = shuffle_inputs(personalities, utterances, history)
history = edict({"chatbot": [], "human": []})
turn = 0
turning_point = random.randint(2, len(utterance)-1) # turn of inputting negative sample
while True:
sentence = "".join(decode(utterance[turn]['history'][-1]))
next_answer = utterance[turn+1]['history'][-1]
candidates = utterance[turn+1]['candidates']
# pprint({"GOLD_ANSWER": decode(next_answer), "CANDIDATES": decode(candidates)})
# predict next sentence
result_conv = chatbot.return_message(sentence, personality)
history.human.append(sentence)
history.chatbot.append(result_conv)
MRPC, CoLa = models
result_mrpc = MRPC.return_prediction(history, gold_history)
result_cola = CoLA.return_prediction(history, gold_history)
turn += 1
if turn >= turning_point:
# set negative sample
candidate = random.choice(candidates)
while candidate == next_answer:
candidate = random.shuffle(candidates)
sentence = "".join(decode(candidate)) # false sentence
result_conv = chatbot.return_message(sentence, personality)
history.human.append(sentence)
history.chatbot.append(result_conv)
result_mrpc = MRPC.return_prediction(history, gold_history)
result_cola = CoLA.return_prediction(history, gold_history)
return result_mrpc, result_cola
def get_metrics(personalities, utterances, history, mrpc_model, cola_model):
MRPC = AFL(model_name = mrpc_model, task = "MRPC")
CoLA = AFL(model_name = cola_model, task = "CoLA")
models = MRPC, CoLA
model_names = mrpc_model, cola_model
sim = []
cor = []
for _ in tqdm(range(1000)):
similarity, correctness = pseudo_code(personalities, utterances, history, models)
sim.append(similarity)
cor.append(correctness)
sim = np.array(sim)
cor = np.array(cor)
print("SIMLIARTY: ", np.mean(sim), "CORRECTNESS: ", np.mean(cor))
mrpc_model = mrpc_model.replace('/', '-') if '/' in mrpc_model else mrpc_model
cola_model = cola_model.replace('/', '-') if '/' in cola_model else mrpc_model
model_names = mrpc_model, cola_model
file_path = './afl_metrics_cola/'
file_name = "_and_".join(model_names)
with open(file_path+file_name+'.json', 'w+') as fp:
json.dump({"SIMLIARTY": sim.tolist(), "CORRECTNESS": cor.tolist()},fp, indent=4)
#%%
mrpc_models = [
"bert-base-cased-finetuned-mrpc",
"textattack/roberta-base-MRPC",
# "textattack/facebook-bart-large-MRPC",
"textattack/xlnet-base-cased-MRPC",
"textattack/albert-base-v2-MRPC",
]
cola_models = [
# "textattack/facebook-bart-large-CoLA",
# "textattack/distilbert-base-uncased-CoLA",
"textattack/bert-base-uncased-CoLA",
"textattack/roberta-base-CoLA",
"textattack/albert-base-v2-CoLA",
"textattack/xlnet-base-cased-CoLA"
]
for mrpc_model in mrpc_models:
for cola_model in cola_models:
print("MODELS: ", mrpc_model, cola_model)
get_metrics(personalities, utterances, history, mrpc_model, cola_model)
# %%
from datasets import load_dataset
from tqdm import tqdm
dataset = load_dataset('glue', 'cola')['test']
for cola_model in cola_models:
CoLA = AFL(model_name = cola_model, task = "CoLA")
results = [CoLA.return_prediction(line['sentence'], None ) for line in tqdm(dataset)]
file_path = './afl_metrics_cola/'
file_name = cola_model.replace('/','-') + '.json'
with open(file_path+file_name, 'w+') as fp:
json.dump({'corrrectness':results}, fp, indent=4)
# %%
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_metric, load_dataset
import numpy as np
from tqdm import tqdm
metric = load_metric("accuracy")
dataset = load_dataset('glue', 'cola', split='test')
model_name = "textattack/bert-base-uncased-CoLA"
def predict_cola(model_name, sentences):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
classes = [-1, 1]
results = []
for sentence in tqdm(sentences):
paraphrase = tokenizer(sentence['sentence'], return_tensors="pt").to(device)
paraphrase_classification_logits = model(**paraphrase)[0]
paraphrase_results = torch.softmax(paraphrase_classification_logits, dim=1)[0].tolist()
result = classes[np.argmax(paraphrase_results)]
results.append(result)
return results
for cola_model in cola_models:
prediction = predict_cola(cola_model, dataset)
metric_result = metric.compute(references=[1]*len(dataset), predictions=prediction)
print(cola_model, ": ", metric_result)
# %%