-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_main.m
52 lines (34 loc) · 1.03 KB
/
data_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
% Simple Inversion of ALICE data: <https://www.hepdata.net/record/ins1614477>
%
% mikael.mieskolainen@cern.ch, 2019
clear; close all;
addpath('./src_hist');
addpath('./src');
system('mkdir ../lhcfigs');
system('mkdir ../lhcfigs2D');
%% Parameter setup
% Poisson mean hypothesis values
mu_vals = [0.33 1.5 3.5 6];
param.algo = 5; % Algorithm 5 for Poisson case, 3 for Gaussian approx
param.R = 100; % Number of iterations in the inverse algorithm (>= 100)
param.lambda = 0.03; % Fixed regularization strength
N_bootstrap = 100; % Number of bootstrap samples
%{
%param.principle = 'a_minus_ndf_min'; % Discrepancy principle
param.principle = 'a_plus_b_min'; % Variational equilibrium
%param.principle = 'a_minus_b_min'; % Test
% Lambda values to scan
lambdas = logspace(-2.301, 0.1, 30);
%}
% Skip 0-bin
SKIP0BIN = false;
% Domain extension (technical factor, at least 2 x to be safe)
extension = 2.0;
%% Read data
data_read;
%% Data inverse
data_invert;
%% Data inverse 2D
data_invert_2D;
%% mu-value scans
data_mu_scan;