-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extract_01E.py
1586 lines (872 loc) · 37.5 KB
/
feature_extract_01E.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import pandas as pd
import hotspot_file_01
import matplotlib.pyplot as plt
import pymp
import math
import multiprocessing
from scipy import optimize
from sklearn import preprocessing
def detect_surface_cnt(df, type_choose=22, **kwargs):
if ('cnt_bounds' in kwargs):
cnt_bounds = kwargs['cnt_bounds']
else:
cnt_bounds = hotspot_file_01.extract_cnt_coords(df)
df_other = df.loc[~(df['type'] == type_choose)]
df_cnt = df.loc[df['type'] == type_choose]
df_1 = df_cnt.loc[:, ['x', 'y', 'z']]
df_2 = df_other.loc[:, ['x', 'y', 'z']]
Z = compute_distance(df_1.as_matrix(), df_2.as_matrix())
print "Z: ", Z
z = np.amin(Z)
idx_val = (np.argmin(Z))
idx_val = np.unravel_index(idx_val, Z.shape)
#print 0.5*(df_1.as_matrix()[idx_val[1], :] + df_2.as_matrix()[idx_val[0], :])
return None
def compute_distance(cnt_array, cnt_other_array):
dist_list = []
sort_dist_list = []
idx_list = []
N = 5
points = cnt_array
for j in range(0, len(cnt_other_array)):
single_point = cnt_other_array[j, :]
dist = np.sum(((points - single_point)**2), axis=1)
dist = np.sqrt(dist)
sort_dist = np.sort(dist)
sort_dist = sort_dist[:N]
idx_sort = np.argsort(dist)
idx_sort = idx_sort[:N]
dist_list.append(dist)
sort_dist_list.append(sort_dist)
idx_list.append(idx_sort)
return np.asarray(dist_list), sort_dist_list, idx_list
#start reading the line
def track_fun_bond(df_t, fun_type_list):
bond_list = []
for t in range(0, len(df_t)):
df = df_t[t]
z_array = check_bond(df=df, fun_type_list=fun_type_list)
bond_list.append(z_array)
return np.asarray(bond_list)
def check_bond(df, fun_type_list, cnt_type=22):
#this function is to determine if the bonding between the CNT and the functional group is retained
#fun_type -> functional group type
df_cnt = df.loc[df['type'] == cnt_type]
df_1 = df_cnt.loc[:, ['x', 'y', 'z']]
z_list = []
#the Z-list constains the mean distance of functional group with its nearest neighbors
#we do a loop as fun_type is a list, there may be more than one atom i'm interested in
for i in range(0, len(fun_type_list)):
fun_type = fun_type_list[i]
df_fun = df.loc[df['type'] == fun_type]
df_fun_loc = df_fun.loc[:, ['x', 'y', 'z']]
#fun_loc -> multiple locations where the functional groups are located
_, Z2, _ = compute_distance(df_1.as_matrix(), df_fun_loc.as_matrix())
z_mean = np.mean(Z2)
z_list.append(z_mean)
return np.asarray(z_list)
def local_features(df_cnt, df_other):
#This function provides the local features for each convololution box
cnt_loc = df_cnt.loc[:, ['x', 'y', 'z']]
#other atom
other_loc = df_other.loc[:, 'mass', 'x', 'y', 'z']
cnt_mat = cnt_loc.as_matrix()
other_mat = other_loc.as_matrix()
FR = feature_equation_01(cnt_mat=cnt_mat, other_mat=other_mat)
return FR
def feature_equation_01(atom_bound, unique_type, bounds=np.asarray([2.0, 5.0, 10.0]), intervals=np.asarray([0.1, 0.1, 0.5])):
#Z is a function of r
#here insert the list of
type_choose = 22
#the first thing to do is detect the atoms
#The idea is that for each unique type we will create an array
b = len(unique_type)
r1 = np.linspace(0, bounds[0], bounds[0]/intervals[0], endpoint=False)
r2 = np.linspace(bounds[0], bounds[1], (bounds[1] - bounds[0])/intervals[1], endpoint=False)
r3 = np.linspace(bounds[1], (bounds[2]), (bounds[2]-bounds[1])/intervals[2] + 1)
r = np.concatenate((r1, r2, r3), axis=0)
x = np.zeros((len(r), b))
for k in range(0, b):
type = unique_type[k]
sigma_r = 1
#Seggregate by type
#df_cnt = df.loc[df['type'] == type_choose]
#df_atom = df.loc[df['type'] == type]
idx_cnt = np.where(atom_bound[:, 1] == type_choose)
idx_fun = np.where(atom_bound[:, 1] == type)
cnt_mat = atom_bound[idx_cnt[0]]
fun_mat = atom_bound[idx_fun[0]]
#indexing out co-ordinates only
cnt_mat = cnt_mat[:, 2:5]
fun_mat = fun_mat[:, 2:5]
#cnt_mat = df_cnt.loc[:, ['x', 'y', 'z']].as_matrix()
#atom_mat = df_atom.loc[:, ['x', 'y', 'z']].as_matrix()
dist_mat = compute_distance(cnt_mat, fun_mat)
d = dist_mat[0].flatten()
for count, r_val in enumerate(r):
x[count, k] = np.sum(np.divide((np.exp((-(r_val - d)**2)/(sigma_r**2))), d))
return r, x
#-----------------------------------------------------------------------------
def feature_equation_02(r, cnt_mat, other_mat, other_type, unique_type=np.asarray([2, 4, 9, 12, 15, 18, 16]), type_choose=22):
b = len(unique_type)
cnt_mat = np.transpose(cnt_mat)
x = np.zeros((len(r), b))
for k in range(0, b):
type = unique_type[k]
#sigma_r = .05
sigma_r = 0.05
#Seggregate by type
#df_cnt = df.loc[df['type'] == type_choose]
#df_atom = df.loc[df['type'] == type]
#fun mat
idx_fun = np.where((other_type.flatten()) == type)[0]
fun_mat = other_mat[idx_fun]
dist_mat = compute_distance(cnt_mat, fun_mat)
#the correct one is in fun mat
d = dist_mat[0].flatten()
d = d[d>0.001]
d = d[d < 10.0]
#print d[d<2.0]
#print d.shape
#print np.amax(d)
#print np.amin(d)
for count, r_val in enumerate(r):
x[count, k] = np.sum(np.divide((np.exp((-(r_val - d)**2)/(sigma_r**2))), d))
return x
####-------------------------------------------------------------------------------
def feature_troubleshoot(df, type_choose=22):
# this is the block to featurize
df_other = df.loc[~(df['type'] == type_choose)]
df_cnt = df.loc[df['type'] == type_choose]
FR = local_features(df_cnt=df_cnt, df_other=df_other)
return None
def detect_locations(df, threshold=4.0, type_choose=22, **kwargs):
if 'fun_type' in kwargs:
fun_type = kwargs['fun_type']
df_fun = df.loc[df['type'] == fun_type]
elif 'fun_id' in kwargs:
fun_id = kwargs['fun_id']
df_fun = df.loc[df['id'] == fun_id]
df_cnt = df.loc[df['type'] == type_choose]
index_fun = df_fun.loc[:, ['id']].as_matrix()
index_cnt = df_cnt.loc[:, ['id']].as_matrix()
df_1 = df_cnt.loc[:, ['x', 'y', 'z']]
df_2 = df_fun.loc[:, ['x', 'y', 'z']]
z1, _, _ = compute_distance(df_1.as_matrix(), df_2.as_matrix())
idx_choose = np.where((np.asarray(z1) < threshold))
id_fun = np.unique(index_fun[idx_choose[0]])
id_cnt = np.unique(index_cnt[idx_choose[1]])
df_fun_out = df_fun[df_fun.id.isin(id_fun)]
df_cnt_out = df_cnt[df_cnt.id.isin(id_cnt)]
z1 = np.asarray(z1)
return df_fun_out, df_cnt_out
def plot_features(R, input_array, idx):
plt.plot(R, input_array[:, idx])
plt.xlabel('r (A)')
plt.ylabel('Z-value')
plt.savefig('fig_Zvalue.eps')
plt.show()
return None
def plot_features02(R, input_array, R2, input_array2, idx):
plt.plot(R, input_array[:, idx], R2, input_array2[:, idx], 'ro')
plt.xlabel('r (A)')
plt.ylabel('Z-value')
plt.savefig('fig_Zvalue.eps')
plt.show()
return None
#def coarsen_features
def feature_cleanup(rho_mat):
rho_out = rho_mat.copy()
rho_mat[rho_mat < 1.0e-3] = 0
mean_val = np.mean(rho_mat, axis=0)
std_val = np.std(rho_mat, axis=0)
for k in range(0, rho_mat.shape[0]):
rho_out[k, :, :] = rho_mat[k, :, :] - mean_val
rho_out[k, :, :] = np.divide(rho_out[k, :, :], std_val)
rho_out[np.isnan(rho_out)] = 0
return rho_out
def CNT_atoms(df, z_len, bound_default=np.asarray([1.0, 2.0, 5.0]), type_choose=22):
#the goal of this function is to flatten the CNT
#and for each atoms track surrounding atoms
df_cnt = df.loc[df['type']==type_choose]
df_other = df
#df_other = df.loc[df['type']!=type_choose]
y_min = np.amin(df_cnt.loc[:, 'y'].as_matrix())
y_max = np.amax(df_cnt.loc[:, 'y'].as_matrix())
y_mid = 0.5*(y_min + y_max)
df_cnt1 = df_cnt.loc[df['y'] > y_mid]
mat_xy = df_cnt.loc[:, ['x', 'y']].as_matrix()
#RBF_array, r_v = compute_RDF(df_cnt, df_other, z_len)
RBF_array, r_v = compute_RDF(df_cnt=df_cnt, df_other=df_other, z_len=z_len, bounds=np.asarray([1.0, 2.0, 5.0]), intervals=[0.01, 0.01, 0.01])
return RBF_array, r_v
def CNT_atoms02(df, z_len, bound_default=np.asarray([1.0, 2.0, 5.0]), fun_type = [12, 9, 15, 18], type_choose=22):
#the goal of this function is to flatten the CNT
#and for each atoms track surrounding atoms
df_cnt = df.loc[df['type']==type_choose]
df_other = df
y_min = np.amin(df_cnt.loc[:, 'y'].as_matrix())
y_max = np.amax(df_cnt.loc[:, 'y'].as_matrix())
y_mid = 0.5*(y_min + y_max)
df_cnt1 = df_cnt.loc[df['y'] > y_mid]
cnt_mat = df_cnt.loc[:, ['x', 'y', 'z']].as_matrix()
cnt_id = df_cnt.loc[:, ['id']].as_matrix()
###----------------------
# choose dataframe with a different type
df_fun = df.loc[df['type'].isin(fun_type)]
fun_mat = df_fun.loc[:, ['x', 'y', 'z']].as_matrix()
fun_type = df_fun.loc[:, ['type']].as_matrix()
###need to keep track of both the
D, _, _ = compute_distance(cnt_array=cnt_mat, cnt_other_array=fun_mat)
#RBF_array, r_v = compute_RDF(df_cnt, df_other, z_len)
RBF_array, r_v = compute_RDF(df_cnt=df_cnt, df_other=df_other, z_len=z_len, bounds=np.asarray([1.0, 2.0, 5.0]), intervals=[0.01, 0.01, 0.01])
###define an fun array
#RBF_fun = np.zeros_like(RBF_array)
R_fun = create_bounds()
RBF_fun = np.zeros((RBF_array.shape[0], len(R_fun), RBF_array.shape[2]))
##2.0 A is the threshold
if np.any(D < 2.0):
#find where D is less than 2.0
idx = np.where(D < 2.0)
#index out cnt id where functionalization has taken place
idx_cnt = idx[1]
idx_fun = idx[0]
print "idx_cnt: ", idx_cnt
print "idx_fun: ", idx_fun
type_fun = (fun_type[idx_fun]).flatten()
print "type fun: ", type_fun
#first check fun_type
opt_mat = create_fun_vector(cnt_mat=cnt_mat, idx_mat=idx_cnt, type_mat=type_fun)
print "opt_mat: "
print opt_mat
#print np.where(fun_mat > 0)
count = 0
#we showed here
for n in idx_cnt:
fun_choose = fun_mat[idx_fun[count], :]
fun_choose = fun_choose[:, None]
type_n = type_fun[count]
print "fun choose: ", fun_choose
print "type_n: ", type_n
df_other = df.loc[df['type']!=type_n]
other_mat = df_other.loc[:, ['x', 'y', 'z']].as_matrix()
other_type = df_other.loc[:, ['type']].as_matrix()
other_image = check_periodic(fun_choose[2], other_mat, z_len)
##print other_image[2311, :]
#troubleshoot
RBF_fun[n, :, :] = feature_equation_02(r=R_fun, cnt_mat=fun_choose, other_mat=other_image, other_type=other_type, unique_type=np.asarray([2, 4, 9, 14, 15, 18, 16]))
count += 1
##read the rbf_array
return RBF_fun, R_fun
def compute_RDF(df_cnt, df_other, z_len, bounds=np.asarray([1.0, 2.0, 5.0]), intervals=np.asarray([0.01, 0.01, 0.01])):
#parameters to compute the RDF
r1 = np.linspace(0, bounds[0], bounds[0] / intervals[0], endpoint=False)
r2 = np.linspace(bounds[0], bounds[1], (bounds[1] - bounds[0]) / intervals[1], endpoint=False)
r3 = np.linspace(bounds[1], (bounds[2]), (bounds[2] - bounds[1]) / intervals[2] + 1)
r = np.concatenate((r1, r2, r3), axis=0)
unique_type = np.asarray([2, 4, 9, 12, 15, 18, 23])
#unique_type = np.asarray([2, 4, 9, 12, 15, 18, 3]) #change this if things don't work
#for each CNT atom I want to compute an RDF
cnt_id = df_cnt.loc[:, ['id']].as_matrix()
#print "fun-CNT id: ", np.where(cnt_id == 3395)
other_id = df_other.loc[:, ['id']].as_matrix()
other_type = df_other.loc[:, ['type']].as_matrix()
#print "fun id: ", np.where(other_id == 3413)
cnt_mat = df_cnt.loc[:, ['x', 'y', 'z']].as_matrix()
other_mat = df_other.loc[:, ['x', 'y', 'z']].as_matrix()
#print "Troubleshoot: "
#print cnt_mat[254, :]
#print other_mat[3381, :]
#print other_type[3381]
#print cnt_mat.shape
# shared array
RBF_array = pymp.shared.array((len(cnt_mat), len(r), len(unique_type)), dtype='float64')
with pymp.Parallel(multiprocessing.cpu_count()) as p:
for i in p.range(len(cnt_mat)):
#for i in range(1):
cnt_choose = cnt_mat[i, :]
#print other_mat[2311, :]
cnt_choose = cnt_choose[:, None]
other_image = check_periodic(cnt_choose[2], other_mat, z_len)
##print other_image[2311, :]
#troubleshoot
RBF_array[i, :, :] = feature_equation_02(r=r, cnt_mat=cnt_choose, other_mat=other_image, other_type=other_type)
###this is an extra block to troubleshoot where
other_test = df_other.loc[df_other['type']!=22]
test_mat = other_test.loc[:, ['x', 'y', 'z']].as_matrix()
D, _, _ = compute_distance(cnt_array=cnt_mat, cnt_other_array=test_mat)
#print D[D < 2.0]
#print np.where([D < 2.0])
return RBF_array, r
def check_periodic(cnt_z, other_mat, z_len):
other_z = other_mat[:, 2] #z-coordinate
z_min = np.amin(other_mat[:, 2])
z_max = np.amax(other_mat[:, 2])
z_mid = 0.5*(z_min + z_max)
if cnt_z < z_mid:
other_z[other_z > z_mid] = other_z[other_z> z_mid] - z_len
else:
other_z[other_z < z_mid] = other_z[other_z < z_mid] + z_len
other_mat[:, 2] = other_z
return other_mat
def discretize_features(RBF, new_intv=np.asarray([0.5, 0.25, 0.5]), old_intv=np.asarray([0.01, 0.01, 0.01]), bounds=np.asarray([1.0, 2.0, 5.0])):
factor_v = (np.divide(new_intv, old_intv)).astype(int)
#idx_new = (np.divide(bounds, new_intv)).astype(int)
#idx_old = (np.divide(bounds, old_intv)).astype(int)
idx_new = np.zeros((len(new_intv), ))
idx_old = np.zeros_like(idx_new)
temp_val = 0
bound_old = 0
temp2 = 0
for idx in range(0, len(new_intv)):
idx_new[idx] = temp_val + int((bounds[idx] - bound_old)/new_intv[idx])
idx_old[idx] = temp2 + int((bounds[idx] - bound_old) / old_intv[idx])
temp_val = int(idx_new[idx])
bound_old = int(bounds[idx])
temp2 = int(idx_old[idx])
idx_new = np.insert(idx_new, 0, 0)
idx_old = np.insert(idx_old, 0, 0)
idx_new = idx_new.astype(int)
idx_old = idx_old.astype(int)
# print idx_new
#print idx_old
#computing the size of the new array
r1 = np.linspace(0, bounds[0], bounds[0] / new_intv[0], endpoint=False) + 0.5*new_intv[0]
r2 = np.linspace(bounds[0], bounds[1], (bounds[1] - bounds[0]) / new_intv[1], endpoint=False) + 0.5*new_intv[1]
r3 = np.linspace(bounds[1], (bounds[2]), (bounds[2] - bounds[1]) / new_intv[2] + 1) + 0.5*new_intv[2]
r = np.concatenate((r1, r2, r3), axis=0)
RBF_out = np.zeros((RBF.shape[0], len(r), RBF.shape[2]))
#print "r: "
#print r
for k in range(0, RBF.shape[0]):
count = 0
#with pymp.Parallel(multiprocessing.cpu_count()) as p:
for i in range(len(new_intv)):
first_idx = idx_new[i]
last_idx = idx_new[i+1]
#print first_idx, last_idx
#print idx_new, idx_old
#print "i :", i
#print "first_idx: ", first_idx
#print "last_idx: ", last_idx
#print "factor_f: ", factor_v[i]
Z = RBF[k, :, :]
#print Z
for j in range(0, last_idx - first_idx):
#print j
#print count
#print idx_old[i] + j*factor_v[i], idx_old[i] + (j+1)*factor_v[i]
#print Z[idx_old[i] + j*factor_v[i]:idx_old[i] + (j+1)*factor_v[i], :]
try:
max_out = np.amax(Z[(idx_old[i] + j*factor_v[i]):(idx_old[i] + (j+1)*factor_v[i]), :], axis=0)
except:
max_out = np.zeros(RBF.shape[2], )
#replacing using a sum
#print "Max out"
#print max_out
#max_out = np.sum(Z[(idx_old[i] + j * factor_v[i]):(idx_old[i] + (j + 1) * factor_v[i]), :], axis=0)
RBF_out[k, count, :] = max_out
count += 1
#print "count: ", count
#print "r"
#print r
#cleaning up RBF
RBF_out[RBF_out < 0.00001] = 0
return r, RBF_out
###The following 3 functions are used to fit the CNT coordinates to a a circle.
##first to extract the x-y coordinates for each df in list
def fit_circle(df_list, type_choose=22):
center_list = []
R_list = []
#with pymp.Parallel(multiprocessing.cpu_count()) as p:
for i in range(len(df_list)):
df = df_list[i]
df_cnt = df.loc[df['type'] == type_choose]
xy_mat = df_cnt.loc[:, ['x', 'y']].as_matrix()
x_m = np.mean(xy_mat[:, 0])
y_m = np.mean(xy_mat[:, 1])
center_estimate = x_m, y_m
center, ier = optimize.leastsq(f, center_estimate, args=(xy_mat[:, 0], xy_mat[:, 1]))
xc, yc = center
Ri = calc_R(xy_mat[:, 0], xy_mat[:, 1], *center)
R = Ri.mean()
residu = np.sum((Ri - R) ** 2)
center_list.append(center)
R_list.append(R)
#plt.plot(xy_mat[:, 0], xy_mat[:, 1], 'ro')
#plt.show()
#plot_data_circle(x=xy_mat[:, 0], y=xy_mat[:, 1], xc=xc, yc=yc, R=R)
print center_list
print R_list
return center_list, R_list
def calc_R(x,y, xc, yc):
""" calculate the distance of each 2D points from the center (xc, yc) """
return np.sqrt((x-xc)**2 + (y-yc)**2)
def f(c, x, y):
""" calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc) """
Ri = calc_R(x, y, *c)
return Ri - Ri.mean()
def plot_data_circle(x,y, xc, yc, R):
f = plt.figure( facecolor='white') #figsize=(7, 5.4), dpi=72,
plt.axis('equal')
theta_fit = np.linspace(-math.pi, math.pi, 180)
x_fit = xc + R*np.cos(theta_fit)
y_fit = yc + R*np.sin(theta_fit)
plt.plot(x_fit, y_fit, 'b-' , label="fitted circle", lw=2)
plt.plot([xc], [yc], 'bD', mec='y', mew=1)
plt.xlabel('x')
plt.ylabel('y')
# plot data
plt.plot(x, y, 'ro', label='data', mew=1)
plt.legend(loc='best',labelspacing=0.1 )
plt.grid()
plt.show()
plt.title('Least Squares Circle')
return None
####with the above three functions, we found the best fit circle,
def transfor_rot(df_list, RBF_in, targets, z_cords, type_choose=22, N_alpha = 20):
del_alpha = np.linspace(0, 2*(math.pi), N_alpha, endpoint=False)
#This function tranforms based on the rotational symmetry
#for each df in df_list, extract xyz, rotate it by alpha
center_list, R_list = fit_circle(df_list)
center_out = []
CNT_out = []
RBF_out = []
for i in range(0, len(df_list)):
df = df_list[i]
df_cnt = df.loc[df['type']==type_choose]
#need to extract RBF
RBF_mat = RBF_in[i]
#extract box bounds
z_bounds = z_cords[i]
z_min = z_bounds[0]
z_max = z_bounds[1]
cnt_id = df_cnt.loc[:, ['id']].as_matrix()
xyz_mat = df_cnt.loc[:, ['x', 'y', 'z']].as_matrix()
xyz_trans = xyz_mat.copy()
xyz_trans[:, 0:2] = xyz_mat[:, 0:2] - center_list[i]
Z_val = xyz_mat[:, 2]
R_p = np.linalg.norm(xyz_trans[:, 0:2], axis=1)
theta_0 = np.arctan2(xyz_trans[:, 1], xyz_trans[:, 0])
#initialize a random array
cnt_aug = np.zeros((len(del_alpha), xyz_mat.shape[0], xyz_mat.shape[1]))
cnt_aug[:, :, 2] = Z_val
for j in range(len(del_alpha)):
theta = theta_0 + del_alpha[j]
cnt_aug[j, :, 0] = np.multiply(R_p, np.cos(theta))
cnt_aug[j, :, 1] = np.multiply(R_p, np.sin(theta))
cnt_aug[:, :, 0:2] = cnt_aug[:, :, 0:2] + center_list[i]
cnt_final = transform_trans(cnt_rot=cnt_aug, z_min=z_min, z_max=z_max)
#RBF_temp repeat
RBF_t = np.repeat(RBF_mat[None, :, :], len(cnt_final), axis=0)
#convert numpy array to list:
cnt_list = array_to_list(cnt_final)
RBF_list = array_to_list(RBF_t)
if len(CNT_out) > 0:
CNT_out = CNT_out + cnt_list
RBF_out = RBF_out + RBF_list
else:
CNT_out = cnt_list
RBF_out = RBF_list
y_out = (np.repeat(targets[:, None], repeats=len(cnt_final), axis=1)).flatten()
##append array here
#plt.plot(cnt_aug[0, :, 0], cnt_aug[0, :, 1], 'ko')
#plt.plot(cnt_aug[5, :, 0], cnt_aug[5, :, 1], 'ro')
#plt.plot(cnt_aug[8, :, 0], cnt_aug[8, :, 1], 'bo')
#plt.show()
#print "z_lo, z_hi: ", z_min, z_max
#print "cnt_aug: "
# print cnt_aug[0,:10, :]
#print "cnt_final: "
#print cnt_final[0, :10, :]
#print cnt_final[2, :10, :]
#print cnt_final[10, :10, :]
#print cnt_final.shape
#plt.plot(cnt_final[0, :, 1], cnt_final[0, :, 2], 'go')
#plt.plot(cnt_final[11, :, 1], cnt_final[21, :, 2], 'ro')
#plt.show()
#print cnt_final.shape
#idx_1 = np.where(cnt_final < 30.0)
#bool_val = cnt_final < 30.0
#cnt_choose = cnt_final[bool_val[:, :, 2]]
#cnt_1 = cnt_final[0, :, :]
#bool2 = cnt_1 < 30.0
#cnt_c2 = cnt_1[bool2[:, 1]]
## we can compute the angle f
#cnt_aug = transform_trans(cnt_rot=cnt_aug, z_min=)
#CNT_out = np.concatenate(CNT_out, axis=0)
print "Troubleshoot: "
print CNT_out[0].shape
print (CNT_out[0])[:, 2]
print RBF_out[0].shape
print len(CNT_out)
print len(RBF_out)
#Troubleshoot
Z = CNT_out[0]
X = Z.reshape(CNT_out[0].shape[1], CNT_out[0].shape[2])
X2 = Z.reshape(CNT_out[1].shape[1], CNT_out[1].shape[2])
#plt.plot(X[:, 1], X[:, 2], 'go')
#plt.plot(X2[:, 1], X2[:, 2], 'go')
#plt.plot(cnt_final[21, :, 1], cnt_final[21, :, 2], 'ro')
#plt.show()
#RBF_out = np.asarray(RBF_out)
#CNT_f = CNT_out.reshape(-1, CNT_out.shape[2], CNT_out.shape[3])
#RBF_f = RBF_out.reshape(-1, RBF_out.shape[2], RBF_out.shape[3])
return CNT_out, RBF_out, y_out, center_list
def linearize_cicle(cnt_list, center_list):
theta_list = []
for k in range(0, len(cnt_list)): #k is th enumbner of models
cnt_xy = cnt_list[k][:, 0:2]
theta = np.arctan(np.divide((cnt_xy[:, 1] - center_list[k][1]), (cnt_xy[:, 0] - center_list[k][0])))
theta_list.append(theta)
return theta_list
def transform_trans(cnt_rot, z_min, z_max, N_t = 20):
#cnt_rot -> 3-D array [#rot copies, cnt_atoms, coords]
#N_t -> number of translational copies
delta = np.linspace(0, (z_max - z_min), N_t, endpoint=False)
Z_trans = np.zeros((cnt_rot.shape[0]*(N_t), cnt_rot.shape[1]))
cnt_trans = np.zeros((cnt_rot.shape[0]*(N_t), cnt_rot.shape[1], cnt_rot.shape[2]))
for k in range(0, cnt_rot.shape[0]):
Z_pick = cnt_rot[k, :, 2]
for i in range(0, cnt_rot.shape[1]):
Z_trans[k*(N_t):(k+1)*(N_t), i] = Z_pick[i] + delta
cnt_trans[k*N_t:(k+1)*N_t, i, 0:2] = cnt_rot[k, i, 0:2]
Z_trans[Z_trans > z_max] = Z_trans[Z_trans > z_max] - (z_max - z_min)
cnt_trans[:, :, 2] = Z_trans
#create a new array
#for each rotational copy, create a translational copy as well:
return cnt_trans
def discretize_2D(cnt_array, RBF_array, ts_bool = False, center_array= np.asarray([30.0, 30.0]), grid = np.asarray([4.0, 2.0]), x_min=25.5, x_max = 35.5, z_min = 8.0, z_max = 52.0):
#cnt_array -> (k x i x j) k-> data # i -> cnt atom # j -> coords array -> k lists of (i * j) data
#RBF_array -> k lists
#specify 2D grid parameters
num_z = (np.ceil((z_max - z_min)/grid[0])).astype(int)
num_x = (np.ceil((x_max - x_min)/grid[1])).astype(int)
z_lin = np.linspace(z_min, z_max, num_z + 1)
x_lin = np.linspace(x_min, x_max, num_x + 1)
id_mat1 = np.zeros((num_z, num_x)) #stores corresponding id matrix
#read in the first entry in the list to get the shape
RBF_1 = np.zeros((len(RBF_array), num_z, num_x, (RBF_array[0]).shape[2]))
RBF_2 = np.zeros_like(RBF_1)
bound_mat = np.zeros((len(RBF_array), num_z, num_x, 4))
sum_val = 0
##---------------output---------------------------
for k in range(0, len(RBF_array)):
cnt_mat = np.squeeze(cnt_array[k], axis=0)
rbf_mat = np.squeeze(RBF_array[k], axis=0)
#print "cnt_mat troubleshoot"
#print len(cnt_mat)
#print cnt_mat.shape
#print rbf_mat.shape
yc = center_array[1]
bool_val = cnt_mat < yc
mat_1 = cnt_mat[bool_val[:, 1]]
mat_2 = cnt_mat[~bool_val[:, 1]]
mat_1 = np.delete(mat_1, 1, 1)
mat_2 = np.delete(mat_2, 1, 1)
count = 0
sum_val = 0
sum_val2 = 0
idx_m1 = np.where(np.logical_and(np.abs(mat_1[:, 0] - 31.69) < 0.01, np.abs(mat_1[:, 1] - 45.43) < 0.01))
idx_m2 = np.where(np.logical_and(np.abs(mat_2[:, 0] - 31.69) < 0.01, np.abs(mat_2[:, 1] - 45.43) < 0.01))
#if len(idx_m1[0]) > 0 or len(idx_m2[0]) > 0:
#print "M indices"
#print idx_m1
#print idx_m2
#find location