-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathtrain.py
259 lines (216 loc) · 9.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
# Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
import os
import numpy as np
import torch
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import cv2
import datetime
import ipdb
writer = SummaryWriter('runs/uniform_all')
SIZE = 320
NC = 14
def generate_label_plain(inputs):
size = inputs.size()
pred_batch = []
for input in inputs:
input = input.view(1, NC, 256, 192)
pred = np.squeeze(input.data.max(1)[1].cpu().numpy(), axis=0)
pred_batch.append(pred)
pred_batch = np.array(pred_batch)
pred_batch = torch.from_numpy(pred_batch)
label_batch = pred_batch.view(size[0], 1, 256, 192)
return label_batch
def morpho(mask, iter):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
new = []
for i in range(len(mask)):
tem = mask[i].squeeze().reshape(256, 192, 1)*255
tem = tem.astype(np.uint8)
tem = cv2.dilate(tem, kernel, iterations=iter)
tem = tem.astype(np.float64)
tem = tem.reshape(1, 256, 192)
new.append(tem.astype(np.float64)/255.0)
new = np.stack(new)
return new
def generate_label_color(inputs):
label_batch = []
for i in range(len(inputs)):
label_batch.append(util.tensor2label(inputs[i], opt.label_nc))
label_batch = np.array(label_batch)
label_batch = label_batch * 2 - 1
input_label = torch.from_numpy(label_batch)
return input_label
def complete_compose(img, mask, label):
label = label.cpu().numpy()
M_f = label > 0
M_f = M_f.astype(np.int)
M_f = torch.FloatTensor(M_f).cuda()
masked_img = img*(1-mask)
M_c = (1-mask.cuda())*M_f
M_c = M_c+torch.zeros(img.shape).cuda() # broadcasting
return masked_img, M_c, M_f
def compose(label, mask, color_mask, edge, color, noise):
# check=check>0
# print(check)
masked_label = label*(1-mask)
masked_edge = mask*edge
masked_color_strokes = mask*(1-color_mask)*color
masked_noise = mask*noise
return masked_label, masked_edge, masked_color_strokes, masked_noise
def changearm(old_label):
label = old_label
arm1 = torch.FloatTensor(
(data['label'].cpu().numpy() == 11).astype(np.int))
arm2 = torch.FloatTensor(
(data['label'].cpu().numpy() == 13).astype(np.int))
noise = torch.FloatTensor(
(data['label'].cpu().numpy() == 7).astype(np.int))
label = label*(1-arm1)+arm1*4
label = label*(1-arm2)+arm2*4
label = label*(1-noise)+noise*4
return label
os.makedirs('sample', exist_ok=True)
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(
iter_path, delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
if opt.debug:
opt.display_freq = 1
opt.print_freq = 1
opt.niter = 1
opt.niter_decay = 0
opt.max_dataset_size = 10
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
total_steps = (start_epoch-1) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
step = 0
step_per_batch = dataset_size / opt.batchSize
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
#save_fake = total_steps % opt.display_freq == display_delta
save_fake = True
# add gaussian noise channel && wash the label
t_mask = torch.FloatTensor(
(data['label'].cpu().numpy() == 7).astype(np.float))
data['label'] = data['label']*(1-t_mask)+t_mask*4
mask_clothes = torch.FloatTensor(
(data['label'].cpu().numpy() == 4).astype(np.int))
mask_fore = torch.FloatTensor(
(data['label'].cpu().numpy() > 0).astype(np.int))
img_fore = data['image']*mask_fore
img_fore_wc = img_fore*mask_fore
all_clothes_label = changearm(data['label'])
############## Forward Pass ######################
losses, fake_image, real_image, input_label, L1_loss, style_loss, clothes_mask, warped, refined, CE_loss, rx, ry, cx, cy, rg, cg = model(Variable(data['label'].cuda()), Variable(data['edge'].cuda()), Variable(
img_fore.cuda()), Variable(mask_clothes.cuda()), Variable(data['color'].cuda()), Variable(all_clothes_label.cuda()), Variable(data['image'].cuda()), Variable(data['pose'].cuda()), Variable(data['mask'].cuda()))
# sum per device losses
losses = [torch.mean(x) if not isinstance(x, int)
else x for x in losses]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN']+loss_dict.get('G_GAN_Feat', 0)+loss_dict.get(
'G_VGG', 0)+torch.mean(L1_loss+CE_loss+rx+ry+cx+cy+rg+cg)
writer.add_scalar('loss_d', loss_D, step)
writer.add_scalar('loss_g', loss_G, step)
writer.add_scalar('loss_L1', torch.mean(L1_loss), step)
writer.add_scalar('CE_loss', torch.mean(CE_loss), step)
writer.add_scalar('rx', torch.mean(rx), step)
writer.add_scalar('ry', torch.mean(ry), step)
writer.add_scalar('cx', torch.mean(cx), step)
writer.add_scalar('cy', torch.mean(cy), step)
writer.add_scalar('loss_g_gan', loss_dict['G_GAN'], step)
writer.add_scalar('loss_g_gan_feat', loss_dict['G_GAN_Feat'], step)
writer.add_scalar('loss_g_vgg', loss_dict['G_VGG'], step)
############### Backward Pass ####################
# update generator weights
model.module.optimizer_G.zero_grad()
loss_G.backward()
model.module.optimizer_G.step()
#
# # update discriminator weights
model.module.optimizer_D.zero_grad()
loss_D.backward()
model.module.optimizer_D.step()
############## Display results and errors ##########
# display output images
if step % 100 == 0:
a = generate_label_color(
generate_label_plain(input_label)).float().cuda()
b = real_image.float().cuda()
c = fake_image.float().cuda()
d = torch.cat([clothes_mask, clothes_mask, clothes_mask], 1)
e = warped
f = refined
combine = torch.cat(
[a[0], b[0], c[0], d[0], e[0], f[0]], 2).squeeze()
cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy()+1)/2
writer.add_image('combine', (combine.data + 1) / 2.0, step)
rgb = (cv_img*255).astype(np.uint8)
bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite('sample/test'+str(step)+'.jpg', bgr)
step += 1
iter_end_time = time.time()
iter_delta_time = iter_end_time - iter_start_time
step_delta = (step_per_batch-step % step_per_batch) + \
step_per_batch*(opt.niter + opt.niter_decay-epoch)
eta = iter_delta_time*step_delta
eta = str(datetime.timedelta(seconds=int(eta)))
time_stamp = datetime.datetime.now()
now = time_stamp.strftime('%Y.%m.%d-%H:%M:%S')
#print('{}:{}:[step-{}]--[loss_G-{:.6f}]--[loss_D-{:.6f}]--[ETA-{}]-[rx{}]-[ry{}]-[cx{}]-[cy{}]-[rg{}]-[cg{}]'.format(now,epoch_iter,step, loss_G, loss_D, eta,rx,ry,cx,cy,rg,cg))
print('{}:{}:[step-{}]--[loss_G-{:.6f}]--[loss_D-{:.6f}]--[ETA-{}]'.format(
now, epoch_iter, step, loss_G, loss_D, eta))
# save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
if epoch_iter >= dataset_size:
break
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
# save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch + 1, 0), delimiter=',', fmt='%d')
# instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
# linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()