-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathestimator.py
132 lines (109 loc) · 5 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
'''
File: estimator.py
Project: MobilePose
File Created: Thursday, 8th March 2018 3:02:01 pm
Author: Yuliang Xiu (yuliangxiu@sjtu.edu.cn)
-----
Last Modified: Thursday, 8th March 2018 3:02:06 pm
Modified By: Yuliang Xiu (yuliangxiu@sjtu.edu.cn>)
-----
Copyright 2018 - 2018 Shanghai Jiao Tong University, Machine Vision and Intelligence Group
'''
import itertools
import logging
import math
from collections import namedtuple
import cv2
import numpy as np
import torch
from scipy.ndimage import maximum_filter, gaussian_filter
from skimage import io, transform
from torch.autograd import Variable
class ResEstimator:
def __init__(self, graph_path, target_size=(224, 224)):
self.target_size = target_size
self.graph_path = graph_path
self.net = torch.load(graph_path,map_location=lambda storage, loc: storage)
self.net.eval()
def addlayer(self, image):
h, w = image.shape[:2]
x = np.arange(0, h)
y = np.arange(0, w)
x, y = np.meshgrid(x, y)
x = x[:,:, np.newaxis]
y = y[:,:, np.newaxis]
image = np.concatenate((image, x, y), axis=2)
return image
def wrap(self, image, output_size):
image_ = image
h, w = image_.shape[:2]
if isinstance(output_size, int):
if h > w:
new_h, new_w = output_size * h / w, output_size
else:
new_h, new_w = output_size, output_size * w / h
else:
new_h, new_w = output_size
new_h, new_w = int(new_h), int(new_w)
image = transform.resize(image_, (new_w, new_h))
pose_fun = lambda x: (x.reshape([-1,2]) * 1.0 /np.array([new_w, new_h])*np.array([w,h]))
return {'image': image, 'pose_fun': pose_fun}
def rescale(self, image, output_size):
image_ = image
h, w = image_.shape[:2]
im_scale = min(float(output_size[0]) / float(h), float(output_size[1]) / float(w))
new_h = int(image_.shape[0] * im_scale)
new_w = int(image_.shape[1] * im_scale)
image = cv2.resize(image_, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
left_pad =int( (output_size[1] - new_w) / 2.0)
top_pad = int((output_size[0] - new_h) / 2.0)
mean=np.array([0.485, 0.456, 0.406])
pad = ((top_pad, top_pad), (left_pad, left_pad))
image = np.stack([np.pad(image[:,:,c], pad, mode='constant', constant_values=mean[c])for c in range(3)], axis=2)
pose_fun = lambda x: (((x.reshape([-1,2])-[left_pad, top_pad]) * 1.0 /np.array([new_w, new_h])*np.array([w,h])))
return {'image': image, 'pose_fun': pose_fun}
def to_tensor(self, image):
x_mean = np.mean(image[:,:,3])
x_std = np.std(image[:,:,3])
y_mean = np.mean(image[:,:,4])
y_std = np.std(image[:,:,4])
mean=np.array([0.485, 0.456, 0.406, x_mean, y_mean])
std=np.array([0.229, 0.224, 0.225, x_std, y_std])
image = torch.from_numpy(((image-mean)/std).transpose((2, 0, 1))).float()
return image
def inference(self, in_npimg, model):
canvas = np.zeros_like(in_npimg)
height = canvas.shape[0]
width = canvas.shape[1]
if model == 'resnet':
rescale_out = self.rescale(in_npimg, (227,227))
elif model =='mobilenet':
rescale_out = self.rescale(in_npimg, (224,224))
image = rescale_out['image']/256.0
image = self.addlayer(image)
image = self.to_tensor(image)
image = image.unsqueeze(0)
pose_fun = rescale_out['pose_fun']
keypoints = self.net(Variable(image))
keypoints = keypoints.data.cpu().numpy()
keypoints = pose_fun(keypoints).astype(int)
return keypoints
@staticmethod
def draw_humans(npimg, pose, imgcopy=False):
if imgcopy:
npimg = np.copy(npimg)
image_h, image_w = npimg.shape[:2]
centers = {}
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255]]
pairs = [[8,9],[11,12],[11,10],[2,1],[1,0],[13,14],[14,15],[3,4],[4,5],[8,7],[7,6],[6,2],[6,3],[8,12],[8,13]]
colors_skeleton = ['r', 'y', 'y', 'g', 'g', 'y', 'y', 'g', 'g', 'm', 'm', 'g', 'g', 'y','y']
colors_skeleton = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255]]
for idx in range(len(colors)):
cv2.circle(npimg, (pose[idx,0], pose[idx,1]), 3, colors[idx], thickness=3, lineType=8, shift=0)
for idx in range(len(colors_skeleton)):
npimg = cv2.line(npimg, (pose[pairs[idx][0],0], pose[pairs[idx][0],1]), (pose[pairs[idx][1],0], pose[pairs[idx][1],1]), colors_skeleton[idx], 3)
return npimg