-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathEval.hs
1004 lines (867 loc) · 41.6 KB
/
Eval.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE TypeSynonymInstances, FlexibleInstances #-}
module Eval where
import Data.List
import Data.Maybe (fromMaybe)
import Data.Map (Map,(!),mapWithKey,assocs,filterWithKey
,elems,intersectionWith,intersection,keys
,member,notMember,empty)
import qualified Data.Map as Map
import qualified Data.Set as Set
import Connections
import CTT
-----------------------------------------------------------------------
-- Lookup functions
look :: String -> Env -> Val
look x (Env (Upd y rho,v:vs,fs,os)) | x == y = v
| otherwise = look x (Env (rho,vs,fs,os))
look x r@(Env (Def _ decls rho,vs,fs,Nameless os)) = case lookup x decls of
Just (_,t) -> eval r t
Nothing -> look x (Env (rho,vs,fs,Nameless os))
look x (Env (Sub _ rho,vs,_:fs,os)) = look x (Env (rho,vs,fs,os))
look x (Env (Empty,_,_,_)) = error $ "look: not found " ++ show x
lookType :: String -> Env -> Val
lookType x (Env (Upd y rho,v:vs,fs,os))
| x /= y = lookType x (Env (rho,vs,fs,os))
| VVar _ a <- v = a
| otherwise = error ""
lookType x r@(Env (Def _ decls rho,vs,fs,os)) = case lookup x decls of
Just (a,_) -> eval r a
Nothing -> lookType x (Env (rho,vs,fs,os))
lookType x (Env (Sub _ rho,vs,_:fs,os)) = lookType x (Env (rho,vs,fs,os))
lookType x (Env (Empty,_,_,_)) = error $ "lookType: not found " ++ show x
lookName :: Name -> Env -> Formula
lookName i (Env (Upd _ rho,v:vs,fs,os)) = lookName i (Env (rho,vs,fs,os))
lookName i (Env (Def _ _ rho,vs,fs,os)) = lookName i (Env (rho,vs,fs,os))
lookName i (Env (Sub j rho,vs,phi:fs,os)) | i == j = phi
| otherwise = lookName i (Env (rho,vs,fs,os))
lookName i _ = error $ "lookName: not found " ++ show i
-----------------------------------------------------------------------
-- Nominal instances
instance Nominal Ctxt where
support _ = []
act e _ = e
swap e _ = e
instance Nominal Env where
support (Env (rho,vs,fs,os)) = support (rho,vs,fs,os)
act (Env (rho,vs,fs,os)) iphi = Env $ act (rho,vs,fs,os) iphi
swap (Env (rho,vs,fs,os)) ij = Env $ swap (rho,vs,fs,os) ij
instance Nominal Val where
support v = case v of
VU -> []
Ter _ e -> support e
VPi u v -> support [u,v]
VComp a u ts -> support (a,u,ts)
VPathP a v0 v1 -> support [a,v0,v1]
VPLam i v -> i `delete` support v
VSigma u v -> support (u,v)
VPair u v -> support (u,v)
VFst u -> support u
VSnd u -> support u
VCon _ vs -> support vs
VPCon _ a vs phis -> support (a,vs,phis)
VHComp a u ts -> support (a,u,ts)
VVar _ v -> support v
VOpaque _ v -> support v
VApp u v -> support (u,v)
VLam _ u v -> support (u,v)
VAppFormula u phi -> support (u,phi)
VSplit u v -> support (u,v)
VGlue a ts -> support (a,ts)
VGlueElem a ts -> support (a,ts)
VUnGlueElem a ts -> support (a,ts)
VCompU a ts -> support (a,ts)
VUnGlueElemU a b es -> support (a,b,es)
VIdPair u us -> support (u,us)
VId a u v -> support (a,u,v)
VIdJ a u c d x p -> support [a,u,c,d,x,p]
act u (i, phi) | i `notElem` support u = u
| otherwise =
let acti :: Nominal a => a -> a
acti u = act u (i, phi)
sphi = support phi
in case u of
VU -> VU
Ter t e -> Ter t (acti e)
VPi a f -> VPi (acti a) (acti f)
VComp a v ts -> compLine (acti a) (acti v) (acti ts)
VPathP a u v -> VPathP (acti a) (acti u) (acti v)
VPLam j v | j == i -> u
| j `notElem` sphi -> VPLam j (acti v)
| otherwise -> VPLam k (acti (v `swap` (j,k)))
where k = fresh (v,Atom i,phi)
VSigma a f -> VSigma (acti a) (acti f)
VPair u v -> VPair (acti u) (acti v)
VFst u -> fstVal (acti u)
VSnd u -> sndVal (acti u)
VCon c vs -> VCon c (acti vs)
VPCon c a vs phis -> pcon c (acti a) (acti vs) (acti phis)
VHComp a u us -> hComp (acti a) (acti u) (acti us)
VVar x v -> VVar x (acti v)
VOpaque x v -> VOpaque x (acti v)
VAppFormula u psi -> acti u @@ acti psi
VApp u v -> app (acti u) (acti v)
VLam x t u -> VLam x (acti t) (acti u)
VSplit u v -> app (acti u) (acti v)
VGlue a ts -> glue (acti a) (acti ts)
VGlueElem a ts -> glueElem (acti a) (acti ts)
VUnGlueElem a ts -> unglueElem (acti a) (acti ts)
VUnGlueElemU a b es -> unGlueU (acti a) (acti b) (acti es)
VCompU a ts -> compUniv (acti a) (acti ts)
VIdPair u us -> VIdPair (acti u) (acti us)
VId a u v -> VId (acti a) (acti u) (acti v)
VIdJ a u c d x p ->
idJ (acti a) (acti u) (acti c) (acti d) (acti x) (acti p)
-- This increases efficiency as it won't trigger computation.
swap u ij@(i,j) =
let sw :: Nominal a => a -> a
sw u = swap u ij
in case u of
VU -> VU
Ter t e -> Ter t (sw e)
VPi a f -> VPi (sw a) (sw f)
VComp a v ts -> VComp (sw a) (sw v) (sw ts)
VPathP a u v -> VPathP (sw a) (sw u) (sw v)
VPLam k v -> VPLam (swapName k ij) (sw v)
VSigma a f -> VSigma (sw a) (sw f)
VPair u v -> VPair (sw u) (sw v)
VFst u -> VFst (sw u)
VSnd u -> VSnd (sw u)
VCon c vs -> VCon c (sw vs)
VPCon c a vs phis -> VPCon c (sw a) (sw vs) (sw phis)
VHComp a u us -> VHComp (sw a) (sw u) (sw us)
VVar x v -> VVar x (sw v)
VOpaque x v -> VOpaque x (sw v)
VAppFormula u psi -> VAppFormula (sw u) (sw psi)
VApp u v -> VApp (sw u) (sw v)
VLam x u v -> VLam x (sw u) (sw v)
VSplit u v -> VSplit (sw u) (sw v)
VGlue a ts -> VGlue (sw a) (sw ts)
VGlueElem a ts -> VGlueElem (sw a) (sw ts)
VUnGlueElem a ts -> VUnGlueElem (sw a) (sw ts)
VUnGlueElemU a b es -> VUnGlueElemU (sw a) (sw b) (sw es)
VCompU a ts -> VCompU (sw a) (sw ts)
VIdPair u us -> VIdPair (sw u) (sw us)
VId a u v -> VId (sw a) (sw u) (sw v)
VIdJ a u c d x p ->
VIdJ (sw a) (sw u) (sw c) (sw d) (sw x) (sw p)
-----------------------------------------------------------------------
-- The evaluator
eval :: Env -> Ter -> Val
eval rho@(Env (_,_,_,Nameless os)) v = case v of
U -> VU
App r s -> app (eval rho r) (eval rho s)
Var i
| i `Set.member` os -> VOpaque i (lookType i rho)
| otherwise -> look i rho
Pi t@(Lam _ a _) -> VPi (eval rho a) (eval rho t)
Sigma t@(Lam _ a _) -> VSigma (eval rho a) (eval rho t)
Pair a b -> VPair (eval rho a) (eval rho b)
Fst a -> fstVal (eval rho a)
Snd a -> sndVal (eval rho a)
Where t decls -> eval (defWhere decls rho) t
Con name ts -> VCon name (map (eval rho) ts)
PCon name a ts phis ->
pcon name (eval rho a) (map (eval rho) ts) (map (evalFormula rho) phis)
Lam{} -> Ter v rho
Split{} -> Ter v rho
Sum{} -> Ter v rho
HSum{} -> Ter v rho
Undef{} -> Ter v rho
Hole{} -> Ter v rho
PathP a e0 e1 -> VPathP (eval rho a) (eval rho e0) (eval rho e1)
PLam i t -> let j = fresh rho
in VPLam j (eval (sub (i,Atom j) rho) t)
AppFormula e phi -> eval rho e @@ evalFormula rho phi
Comp a t0 ts ->
compLine (eval rho a) (eval rho t0) (evalSystem rho ts)
HComp a t0 ts ->
hComp (eval rho a) (eval rho t0) (evalSystem rho ts)
Fill a t0 ts ->
fillLine (eval rho a) (eval rho t0) (evalSystem rho ts)
Glue a ts -> glue (eval rho a) (evalSystem rho ts)
GlueElem a ts -> glueElem (eval rho a) (evalSystem rho ts)
UnGlueElem a ts -> unglueElem (eval rho a) (evalSystem rho ts)
Id a r s -> VId (eval rho a) (eval rho r) (eval rho s)
IdPair b ts -> VIdPair (eval rho b) (evalSystem rho ts)
IdJ a t c d x p -> idJ (eval rho a) (eval rho t) (eval rho c)
(eval rho d) (eval rho x) (eval rho p)
_ -> error $ "Cannot evaluate " ++ show v
evals :: Env -> [(Ident,Ter)] -> [(Ident,Val)]
evals env bts = [ (b,eval env t) | (b,t) <- bts ]
evalFormula :: Env -> Formula -> Formula
evalFormula rho phi = case phi of
Atom i -> lookName i rho
NegAtom i -> negFormula (lookName i rho)
phi1 :/\: phi2 -> evalFormula rho phi1 `andFormula` evalFormula rho phi2
phi1 :\/: phi2 -> evalFormula rho phi1 `orFormula` evalFormula rho phi2
_ -> phi
evalSystem :: Env -> System Ter -> System Val
evalSystem rho ts =
let out = concat [ let betas = meetss [ invFormula (lookName i rho) d
| (i,d) <- assocs alpha ]
in [ (beta,eval (rho `face` beta) talpha) | beta <- betas ]
| (alpha,talpha) <- assocs ts ]
in mkSystem out
app :: Val -> Val -> Val
app u v = case (u,v) of
(Ter (Lam x _ t) e,_) -> eval (upd (x,v) e) t
(Ter (Split _ _ _ nvs) e,VCon c vs) -> case lookupBranch c nvs of
Just (OBranch _ xs t) -> eval (upds (zip xs vs) e) t
_ -> error $ "app: missing case in split for " ++ c
(Ter (Split _ _ _ nvs) e,VPCon c _ us phis) -> case lookupBranch c nvs of
Just (PBranch _ xs is t) -> eval (subs (zip is phis) (upds (zip xs us) e)) t
_ -> error $ "app: missing case in split for " ++ c
(Ter (Split _ _ ty hbr) e,VHComp a w ws) -> case eval e ty of
VPi _ f -> let j = fresh (e,v)
wsj = Map.map (@@ j) ws
w' = app u w
ws' = mapWithKey (\alpha -> app (u `face` alpha)) wsj
-- a should be constant
in comp j (app f (fill j a w wsj)) w' ws'
_ -> error $ "app: Split annotation not a Pi type " ++ show u
(Ter Split{} _,_) | isNeutral v -> VSplit u v
(VComp (VPLam i (VPi a f)) li0 ts,vi1) ->
let j = fresh (u,vi1)
(aj,fj) = (a,f) `swap` (i,j)
tsj = Map.map (@@ j) ts
v = transFillNeg j aj vi1
vi0 = transNeg j aj vi1
in comp j (app fj v) (app li0 vi0)
(intersectionWith app tsj (border v tsj))
_ | isNeutral u -> VApp u v
_ -> error $ "app \n " ++ show u ++ "\n " ++ show v
fstVal, sndVal :: Val -> Val
fstVal (VPair a b) = a
fstVal u | isNeutral u = VFst u
fstVal u = error $ "fstVal: " ++ show u ++ " is not neutral."
sndVal (VPair a b) = b
sndVal u | isNeutral u = VSnd u
sndVal u = error $ "sndVal: " ++ show u ++ " is not neutral."
-- infer the type of a neutral value
inferType :: Val -> Val
inferType v = case v of
VVar _ t -> t
VOpaque _ t -> t
Ter (Undef _ t) rho -> eval rho t
VFst t -> case inferType t of
VSigma a _ -> a
ty -> error $ "inferType: expected Sigma type for " ++ show v
++ ", got " ++ show ty
VSnd t -> case inferType t of
VSigma _ f -> app f (VFst t)
ty -> error $ "inferType: expected Sigma type for " ++ show v
++ ", got " ++ show ty
VSplit s@(Ter (Split _ _ t _) rho) v1 -> case eval rho t of
VPi _ f -> app f v1
ty -> error $ "inferType: Pi type expected for split annotation in "
++ show v ++ ", got " ++ show ty
VApp t0 t1 -> case inferType t0 of
VPi _ f -> app f t1
ty -> error $ "inferType: expected Pi type for " ++ show v
++ ", got " ++ show ty
VAppFormula t phi -> case inferType t of
VPathP a _ _ -> a @@ phi
ty -> error $ "inferType: expected PathP type for " ++ show v
++ ", got " ++ show ty
VComp a _ _ -> a @@ One
-- VUnGlueElem _ b _ -> b -- This is wrong! Store the type??
VUnGlueElemU _ b _ -> b
VIdJ _ _ c _ x p -> app (app c x) p
_ -> error $ "inferType: not neutral " ++ show v
(@@) :: ToFormula a => Val -> a -> Val
(VPLam i u) @@ phi = u `act` (i,toFormula phi)
v@(Ter Hole{} _) @@ phi = VAppFormula v (toFormula phi)
v @@ phi | isNeutral v = case (inferType v,toFormula phi) of
(VPathP _ a0 _,Dir 0) -> a0
(VPathP _ _ a1,Dir 1) -> a1
_ -> VAppFormula v (toFormula phi)
v @@ phi = error $ "(@@): " ++ show v ++ " should be neutral."
-- Applying a *fresh* name.
(@@@) :: Val -> Name -> Val
(VPLam i u) @@@ j = u `swap` (i,j)
v @@@ j = VAppFormula v (toFormula j)
-------------------------------------------------------------------------------
-- Composition and filling
comp :: Name -> Val -> Val -> System Val -> Val
comp i a u ts | eps `member` ts = (ts ! eps) `face` (i ~> 1)
comp i a u ts = case a of
VPathP p v0 v1 -> let j = fresh (Atom i,a,u,ts)
in VPLam j $ comp i (p @@ j) (u @@ j) $
insertsSystem [(j ~> 0,v0),(j ~> 1,v1)] (Map.map (@@ j) ts)
VId b v0 v1 -> case u of
VIdPair r _ | all isIdPair (elems ts) ->
let j = fresh (Atom i,a,u,ts)
VIdPair z _ @@@ phi = z @@ phi
sys (VIdPair _ ws) = ws
w = VPLam j $ comp i b (r @@ j) $
insertsSystem [(j ~> 0,v0),(j ~> 1,v1)]
(Map.map (@@@ j) ts)
in VIdPair w (joinSystem (Map.map sys (ts `face` (i ~> 1))))
_ -> VComp (VPLam i a) u (Map.map (VPLam i) ts)
VSigma a f -> VPair ui1 comp_u2
where (t1s, t2s) = (Map.map fstVal ts, Map.map sndVal ts)
(u1, u2) = (fstVal u, sndVal u)
fill_u1 = fill i a u1 t1s
ui1 = comp i a u1 t1s
comp_u2 = comp i (app f fill_u1) u2 t2s
VPi{} -> VComp (VPLam i a) u (Map.map (VPLam i) ts)
VU -> compUniv u (Map.map (VPLam i) ts)
VCompU a es | not (isNeutralU i es u ts) -> compU i a es u ts
VGlue b equivs | not (isNeutralGlue i equivs u ts) -> compGlue i b equivs u ts
Ter (Sum _ _ nass) env -> case u of
VCon n us | all isCon (elems ts) -> case lookupLabel n nass of
Just as -> let tsus = transposeSystemAndList (Map.map unCon ts) us
in VCon n $ comps i as env tsus
Nothing -> error $ "comp: missing constructor in labelled sum " ++ n
_ -> VComp (VPLam i a) u (Map.map (VPLam i) ts)
Ter (HSum _ _ nass) env -> compHIT i a u ts
_ -> VComp (VPLam i a) u (Map.map (VPLam i) ts)
compNeg :: Name -> Val -> Val -> System Val -> Val
compNeg i a u ts = comp i (a `sym` i) u (ts `sym` i)
compLine :: Val -> Val -> System Val -> Val
compLine a u ts = comp i (a @@ i) u (Map.map (@@ i) ts)
where i = fresh (a,u,ts)
compConstLine :: Val -> Val -> System Val -> Val
compConstLine a u ts = comp i a u (Map.map (@@ i) ts)
where i = fresh (a,u,ts)
comps :: Name -> [(Ident,Ter)] -> Env -> [(System Val,Val)] -> [Val]
comps i [] _ [] = []
comps i ((x,a):as) e ((ts,u):tsus) =
let v = fill i (eval e a) u ts
vi1 = comp i (eval e a) u ts
vs = comps i as (upd (x,v) e) tsus
in vi1 : vs
comps _ _ _ _ = error "comps: different lengths of types and values"
fill :: Name -> Val -> Val -> System Val -> Val
fill i a u ts =
comp j (a `conj` (i,j)) u (insertSystem (i ~> 0) u (ts `conj` (i,j)))
where j = fresh (Atom i,a,u,ts)
fillNeg :: Name -> Val -> Val -> System Val -> Val
fillNeg i a u ts = (fill i (a `sym` i) u (ts `sym` i)) `sym` i
fillLine :: Val -> Val -> System Val -> Val
fillLine a u ts = VPLam i $ fill i (a @@ i) u (Map.map (@@ i) ts)
where i = fresh (a,u,ts)
-- fills :: Name -> [(Ident,Ter)] -> Env -> [(System Val,Val)] -> [Val]
-- fills i [] _ [] = []
-- fills i ((x,a):as) e ((ts,u):tsus) =
-- let v = fill i (eval e a) ts u
-- vs = fills i as (Upd e (x,v)) tsus
-- in v : vs
-- fills _ _ _ _ = error "fills: different lengths of types and values"
-----------------------------------------------------------
-- Transport and squeeze (defined using comp)
trans :: Name -> Val -> Val -> Val
trans i v0 v1 = comp i v0 v1 empty
transNeg :: Name -> Val -> Val -> Val
transNeg i a u = trans i (a `sym` i) u
transLine :: Val -> Val -> Val
transLine u v = trans i (u @@ i) v
where i = fresh (u,v)
transNegLine :: Val -> Val -> Val
transNegLine u v = transNeg i (u @@ i) v
where i = fresh (u,v)
-- TODO: define in terms of comps?
transps :: Name -> [(Ident,Ter)] -> Env -> [Val] -> [Val]
transps i [] _ [] = []
transps i ((x,a):as) e (u:us) =
let v = transFill i (eval e a) u
vi1 = trans i (eval e a) u
vs = transps i as (upd (x,v) e) us
in vi1 : vs
transps _ _ _ _ = error "transps: different lengths of types and values"
transFill :: Name -> Val -> Val -> Val
transFill i a u = fill i a u empty
transFillNeg :: Name -> Val -> Val -> Val
transFillNeg i a u = (transFill i (a `sym` i) u) `sym` i
-- Given u of type a "squeeze i a u" connects in the direction i
-- trans i a u(i=0) to u(i=1)
squeeze :: Name -> Val -> Val -> Val
squeeze i a u = comp j (a `disj` (i,j)) u $ mkSystem [ (i ~> 1, ui1) ]
where j = fresh (Atom i,a,u)
ui1 = u `face` (i ~> 1)
squeezes :: Name -> [(Ident,Ter)] -> Env -> [Val] -> [Val]
squeezes i xas e us = comps j xas (e `disj` (i,j)) us'
where j = fresh (us,e,Atom i)
us' = [ (mkSystem [(i ~> 1, u `face` (i ~> 1))],u) | u <- us ]
-------------------------------------------------------------------------------
-- | Id
idJ :: Val -> Val -> Val -> Val -> Val -> Val -> Val
idJ a v c d x p = case p of
VIdPair w ws -> comp i (app (app c (w @@ i)) w') d
(border d (shape ws))
where w' = VIdPair (VPLam j $ w @@ (Atom i :/\: Atom j))
(insertSystem (i ~> 0) v ws)
i:j:_ = freshs [a,v,c,d,x,p]
_ -> VIdJ a v c d x p
isIdPair :: Val -> Bool
isIdPair VIdPair{} = True
isIdPair _ = False
-------------------------------------------------------------------------------
-- | HITs
pcon :: LIdent -> Val -> [Val] -> [Formula] -> Val
pcon c a@(Ter (HSum _ _ lbls) rho) us phis = case lookupPLabel c lbls of
Just (tele,is,ts) | eps `member` vs -> vs ! eps
| otherwise -> VPCon c a us phis
where rho' = subs (zip is phis) (updsTele tele us rho)
vs = evalSystem rho' ts
Nothing -> error "pcon"
pcon c a us phi = VPCon c a us phi
compHIT :: Name -> Val -> Val -> System Val -> Val
compHIT i a u us
| isNeutral u || isNeutralSystem us =
VComp (VPLam i a) u (Map.map (VPLam i) us)
| otherwise =
hComp (a `face` (i ~> 1)) (transpHIT i a u) $
mapWithKey (\alpha uAlpha ->
VPLam i $ squeezeHIT i (a `face` alpha) uAlpha) us
-- Given u of type a(i=0), transpHIT i a u is an element of a(i=1).
transpHIT :: Name -> Val -> Val -> Val
transpHIT i a@(Ter (HSum _ _ nass) env) u =
let j = fresh (a,u)
aij = swap a (i,j)
in
case u of
VCon n us -> case lookupLabel n nass of
Just as -> VCon n (transps i as env us)
Nothing -> error $ "transpHIT: missing constructor in labelled sum " ++ n
VPCon c _ ws0 phis -> case lookupLabel c nass of
Just as -> pcon c (a `face` (i ~> 1)) (transps i as env ws0) phis
Nothing -> error $ "transpHIT: missing path constructor " ++ c
VHComp _ v vs ->
hComp (a `face` (i ~> 1)) (transpHIT i a v) $
mapWithKey (\alpha vAlpha ->
VPLam j $ transpHIT j (aij `face` alpha) (vAlpha @@ j)) vs
_ -> error $ "transpHIT: neutral " ++ show u
-- given u(i) of type a(i) "squeezeHIT i a u" connects in the direction i
-- transHIT i a u(i=0) to u(i=1) in a(1)
squeezeHIT :: Name -> Val -> Val -> Val
squeezeHIT i a@(Ter (HSum _ _ nass) env) u =
let j = fresh (a,u)
in
case u of
VCon n us -> case lookupLabel n nass of
Just as -> VCon n (squeezes i as env us)
Nothing -> error $ "squeezeHIT: missing constructor in labelled sum " ++ n
VPCon c _ ws0 phis -> case lookupLabel c nass of
Just as -> pcon c (a `face` (i ~> 1)) (squeezes i as env ws0) phis
Nothing -> error $ "squeezeHIT: missing path constructor " ++ c
VHComp _ v vs -> hComp (a `face` (i ~> 1)) (squeezeHIT i a v) $
mapWithKey
(\alpha vAlpha -> case Map.lookup i alpha of
Nothing -> VPLam j $ squeezeHIT i (a `face` alpha) (vAlpha @@ j)
Just Zero -> VPLam j $ transpHIT i
(a `face` (Map.delete i alpha)) (vAlpha @@ j)
Just One -> vAlpha)
vs
_ -> error $ "squeezeHIT: neutral " ++ show u
hComp :: Val -> Val -> System Val -> Val
hComp a u us | eps `member` us = (us ! eps) @@ One
| otherwise = VHComp a u us
-------------------------------------------------------------------------------
-- | Glue
-- An equivalence for a type a is a triple (t,f,p) where
-- t : U
-- f : t -> a
-- p : (x : a) -> isContr ((y:t) * Id a x (f y))
-- with isContr c = (z : c) * ((z' : C) -> Id c z z')
-- Extraction functions for getting a, f, s and t:
equivDom :: Val -> Val
equivDom = fstVal
equivFun :: Val -> Val
equivFun = fstVal . sndVal
equivContr :: Val -> Val
equivContr = sndVal . sndVal
glue :: Val -> System Val -> Val
glue b ts | eps `member` ts = equivDom (ts ! eps)
| otherwise = VGlue b ts
glueElem :: Val -> System Val -> Val
glueElem v us | eps `member` us = us ! eps
glueElem v us = VGlueElem v us
unglueElem :: Val -> System Val -> Val
unglueElem w isos | eps `member` isos = app (equivFun (isos ! eps)) w
| otherwise = case w of
VGlueElem v us -> v
_ -> VUnGlueElem w isos
unGlue :: Val -> Val -> System Val -> Val
unGlue w b equivs | eps `member` equivs = app (equivFun (equivs ! eps)) w
| otherwise = case w of
VGlueElem v us -> v
_ -> error ("unglue: neutral" ++ show w)
isNeutralGlue :: Name -> System Val -> Val -> System Val -> Bool
isNeutralGlue i equivs u0 ts = (eps `notMember` equivsi0 && isNeutral u0) ||
any (\(alpha,talpha) ->
eps `notMember` (equivs `face` alpha) && isNeutral talpha)
(assocs ts)
where equivsi0 = equivs `face` (i ~> 0)
-- this is exactly the same as isNeutralGlue?
isNeutralU :: Name -> System Val -> Val -> System Val -> Bool
isNeutralU i eqs u0 ts = (eps `notMember` eqsi0 && isNeutral u0) ||
any (\(alpha,talpha) ->
eps `notMember` (eqs `face` alpha) && isNeutral talpha)
(assocs ts)
where eqsi0 = eqs `face` (i ~> 0)
-- Extend the system ts to a total element in b given q : isContr b
extend :: Val -> Val -> System Val -> Val
extend b q ts = comp i b (fstVal q) ts'
where i = fresh (b,q,ts)
ts' = mapWithKey
(\alpha tAlpha -> app ((sndVal q) `face` alpha) tAlpha @@ i) ts
-- psi/b corresponds to ws
-- b0 corresponds to wi0
-- a0 corresponds to vi0
-- psi/a corresponds to vs
-- a1' corresponds to vi1'
-- equivs' corresponds to delta
-- ti1' corresponds to usi1'
compGlue :: Name -> Val -> System Val -> Val -> System Val -> Val
compGlue i a equivs wi0 ws = glueElem vi1 usi1
where ai1 = a `face` (i ~> 1)
vs = mapWithKey
(\alpha wAlpha ->
unGlue wAlpha (a `face` alpha) (equivs `face` alpha)) ws
vsi1 = vs `face` (i ~> 1) -- same as: border vi1 vs
vi0 = unGlue wi0 (a `face` (i ~> 0)) (equivs `face` (i ~> 0)) -- in a(i0)
vi1' = comp i a vi0 vs -- in a(i1)
equivsI1 = equivs `face` (i ~> 1)
equivs' = filterWithKey (\alpha _ -> i `notMember` alpha) equivs
us' = mapWithKey (\gamma equivG ->
fill i (equivDom equivG) (wi0 `face` gamma) (ws `face` gamma))
equivs'
usi1' = mapWithKey (\gamma equivG ->
comp i (equivDom equivG) (wi0 `face` gamma) (ws `face` gamma))
equivs'
-- path in ai1 between vi1 and f(i1) usi1' on equivs'
ls' = mapWithKey (\gamma equivG ->
pathComp i (a `face` gamma) (vi0 `face` gamma)
(equivFun equivG `app` (us' ! gamma)) (vs `face` gamma))
equivs'
fibersys = intersectionWith VPair usi1' ls' -- on equivs'
wsi1 = ws `face` (i ~> 1)
fibersys' = mapWithKey
(\gamma equivG ->
let fibsgamma = intersectionWith (\ x y -> VPair x (constPath y))
(wsi1 `face` gamma) (vsi1 `face` gamma)
in extend (mkFiberType (ai1 `face` gamma) (vi1' `face` gamma) equivG)
(app (equivContr equivG) (vi1' `face` gamma))
(fibsgamma `unionSystem` (fibersys `face` gamma))) equivsI1
vi1 = compConstLine ai1 vi1'
(Map.map sndVal fibersys' `unionSystem` Map.map constPath vsi1)
usi1 = Map.map fstVal fibersys'
mkFiberType :: Val -> Val -> Val -> Val
mkFiberType a x equiv = eval rho $
Sigma $ Lam "y" tt (PathP (PLam (Name "_") ta) tx (App tf ty))
where [ta,tx,ty,tf,tt] = map Var ["a","x","y","f","t"]
rho = upds [("a",a),("x",x),("f",equivFun equiv)
,("t",equivDom equiv)] emptyEnv
-- Assumes u' : A is a solution of us + (i0 -> u0)
-- The output is an L-path in A(i1) between comp i u0 us and u'(i1)
pathComp :: Name -> Val -> Val -> Val -> System Val -> Val
pathComp i a u0 u' us = VPLam j $ comp i a u0 us'
where j = fresh (Atom i,a,us,u0,u')
us' = insertsSystem [(j ~> 1, u')] us
-------------------------------------------------------------------------------
-- | Composition in the Universe
-- any path between types define an equivalence
eqFun :: Val -> Val -> Val
eqFun = transNegLine
unGlueU :: Val -> Val -> System Val -> Val
unGlueU w b es | eps `Map.member` es = eqFun (es ! eps) w
| otherwise = case w of
VGlueElem v us -> v
_ -> VUnGlueElemU w b es
compUniv :: Val -> System Val -> Val
compUniv b es | eps `Map.member` es = (es ! eps) @@ One
| otherwise = VCompU b es
compU :: Name -> Val -> System Val -> Val -> System Val -> Val
compU i a eqs wi0 ws = glueElem vi1 usi1
where ai1 = a `face` (i ~> 1)
vs = mapWithKey
(\alpha wAlpha ->
unGlueU wAlpha (a `face` alpha) (eqs `face` alpha)) ws
vsi1 = vs `face` (i ~> 1) -- same as: border vi1 vs
vi0 = unGlueU wi0 (a `face` (i ~> 0)) (eqs `face` (i ~> 0)) -- in a(i0)
vi1' = comp i a vi0 vs -- in a(i1)
eqsI1 = eqs `face` (i ~> 1)
eqs' = filterWithKey (\alpha _ -> i `notMember` alpha) eqs
us' = mapWithKey (\gamma eqG ->
fill i (eqG @@ One) (wi0 `face` gamma) (ws `face` gamma))
eqs'
usi1' = mapWithKey (\gamma eqG ->
comp i (eqG @@ One) (wi0 `face` gamma) (ws `face` gamma))
eqs'
-- path in ai1 between vi1 and f(i1) usi1' on eqs'
ls' = mapWithKey (\gamma eqG ->
pathComp i (a `face` gamma) (vi0 `face` gamma)
(eqFun eqG (us' ! gamma)) (vs `face` gamma))
eqs'
fibersys = intersectionWith (\ x y -> (x,y)) usi1' ls' -- on eqs'
wsi1 = ws `face` (i ~> 1)
fibersys' = mapWithKey
(\gamma eqG ->
let fibsgamma = intersectionWith (\ x y -> (x,constPath y))
(wsi1 `face` gamma) (vsi1 `face` gamma)
in lemEq eqG (vi1' `face` gamma)
(fibsgamma `unionSystem` (fibersys `face` gamma))) eqsI1
vi1 = compConstLine ai1 vi1'
(Map.map snd fibersys' `unionSystem` Map.map constPath vsi1)
usi1 = Map.map fst fibersys'
lemEq :: Val -> Val -> System (Val,Val) -> (Val,Val)
lemEq eq b aps = (a,VPLam i (compNeg j (eq @@ j) p1 thetas'))
where
i:j:_ = freshs (eq,b,aps)
ta = eq @@ One
p1s = mapWithKey (\alpha (aa,pa) ->
let eqaj = (eq `face` alpha) @@ j
ba = b `face` alpha
in comp j eqaj (pa @@ i)
(mkSystem [ (i~>0,transFill j eqaj ba)
, (i~>1,transFillNeg j eqaj aa)])) aps
thetas = mapWithKey (\alpha (aa,pa) ->
let eqaj = (eq `face` alpha) @@ j
ba = b `face` alpha
in fill j eqaj (pa @@ i)
(mkSystem [ (i~>0,transFill j eqaj ba)
, (i~>1,transFillNeg j eqaj aa)])) aps
a = comp i ta (trans i (eq @@ i) b) p1s
p1 = fill i ta (trans i (eq @@ i) b) p1s
thetas' = insertsSystem [ (i ~> 0,transFill j (eq @@ j) b)
, (i ~> 1,transFillNeg j (eq @@ j) a)] thetas
-- Old version:
-- This version triggers the following error when checking the normal form of corrUniv:
-- Parsed "examples/nunivalence2.ctt" successfully!
-- Resolver failed: Cannot resolve name !3 at position (7,30062) in module nunivalence2
-- compU :: Name -> Val -> System Val -> Val -> System Val -> Val
-- compU i b es wi0 ws = glueElem vi1'' usi1''
-- where bi1 = b `face` (i ~> 1)
-- vs = mapWithKey (\alpha wAlpha ->
-- unGlueU wAlpha (b `face` alpha) (es `face` alpha)) ws
-- vsi1 = vs `face` (i ~> 1) -- same as: border vi1 vs
-- vi0 = unGlueU wi0 (b `face` (i ~> 0)) (es `face` (i ~> 0)) -- in b(i0)
-- v = fill i b vi0 vs -- in b
-- vi1 = comp i b vi0 vs -- is v `face` (i ~> 1) in b(i1)
-- esI1 = es `face` (i ~> 1)
-- es' = filterWithKey (\alpha _ -> i `Map.notMember` alpha) es
-- es'' = filterWithKey (\alpha _ -> alpha `Map.notMember` es) esI1
-- us' = mapWithKey (\gamma eGamma ->
-- fill i (eGamma @@ One) (wi0 `face` gamma) (ws `face` gamma))
-- es'
-- usi1' = mapWithKey (\gamma eGamma ->
-- comp i (eGamma @@ One) (wi0 `face` gamma) (ws `face` gamma))
-- es'
-- ls' = mapWithKey (\gamma eGamma ->
-- pathComp i (b `face` gamma) (v `face` gamma)
-- (transNegLine eGamma (us' ! gamma)) (vs `face` gamma))
-- es'
-- vi1' = compLine (constPath bi1) vi1
-- (ls' `unionSystem` Map.map constPath vsi1)
-- wsi1 = ws `face` (i ~> 1)
-- -- for gamma in es'', (i1) gamma is in es, so wsi1 gamma
-- -- is in the domain of isoGamma
-- uls'' = mapWithKey (\gamma eGamma ->
-- isoToEquivU (bi1 `face` gamma) eGamma
-- ((usi1' `face` gamma) `unionSystem` (wsi1 `face` gamma))
-- (vi1' `face` gamma))
-- es''
-- vsi1' = Map.map constPath $ border vi1' es' `unionSystem` vsi1
-- vi1'' = compLine (constPath bi1) vi1'
-- (Map.map snd uls'' `unionSystem` vsi1')
-- usi1'' = Map.mapWithKey (\gamma _ ->
-- if gamma `Map.member` usi1' then usi1' ! gamma
-- else fst (uls'' ! gamma))
-- esI1
-- IsoToEquiv, takes a line eq in U, a system us and a value v, s.t. f us =
-- border v. Outputs (u,p) s.t. border u = us and a path p between v
-- and f u, where f is transNegLine eq
-- isoToEquivU :: Val -> Val -> System Val -> Val -> (Val, Val)
-- isoToEquivU b eq us v = (u, VPLam i theta)
-- where i:j:_ = freshs (b,eq,us,v)
-- ej = eq @@ j
-- a = eq @@ One
-- ws = mapWithKey (\alpha uAlpha ->
-- transFillNeg j (ej `face` alpha) uAlpha) us
-- u = comp j ej v ws
-- w = fill j ej v ws
-- xs = insertSystem (i ~> 0) w $
-- insertSystem (i ~> 1) (transFillNeg j ej u) $ ws
-- theta = compNeg j ej u xs
-- Old version:
-- isoToEquivU :: Val -> Val -> System Val -> Val -> (Val, Val)
-- isoToEquivU b eq us v = (u, VPLam i theta'')
-- where i:j:_ = freshs (b,eq,us,v)
-- a = eq @@ One
-- g = transLine
-- f = transNegLine
-- s e y = VPLam j $ compNeg i (e @@ i) (trans i (e @@ i) y)
-- (mkSystem [(j ~> 0, transFill j (e @@ j) y)
-- ,(j ~> 1, transFillNeg j (e @@ j)
-- (trans j (e @@ j) y))])
-- t e x = VPLam j $ comp i (e @@ i) (transNeg i (e @@ i) x)
-- (mkSystem [(j ~> 0, transFill j (e @@ j)
-- (transNeg j (e @@ j) x))
-- ,(j ~> 1, transFillNeg j (e @@ j) x)])
-- gv = g eq v
-- us' = mapWithKey (\alpha uAlpha ->
-- t (eq `face` alpha) uAlpha @@ i) us
-- theta = fill i a gv us'
-- u = comp i a gv us' -- Same as "theta `face` (i ~> 1)"
-- ws = insertSystem (i ~> 0) gv $
-- insertSystem (i ~> 1) (t eq u @@ j) $
-- mapWithKey
-- (\alpha uAlpha ->
-- t (eq `face` alpha) uAlpha @@ (Atom i :/\: Atom j)) us
-- theta' = compNeg j a theta ws
-- xs = insertSystem (i ~> 0) (s eq v @@ j) $
-- insertSystem (i ~> 1) (s eq (f eq u) @@ j) $
-- mapWithKey
-- (\alpha uAlpha ->
-- s (eq `face` alpha) (f (eq `face` alpha) uAlpha) @@ j) us
-- theta'' = comp j b (f eq theta') xs
-------------------------------------------------------------------------------
-- | Conversion
class Convertible a where
conv :: [String] -> a -> a -> Bool
isCompSystem :: (Nominal a, Convertible a) => [String] -> System a -> Bool
isCompSystem ns ts = and [ conv ns (getFace alpha beta) (getFace beta alpha)
| (alpha,beta) <- allCompatible (keys ts) ]
where getFace a b = face (ts ! a) (b `minus` a)
instance Convertible Env where
conv ns (Env (rho1,vs1,fs1,os1)) (Env (rho2,vs2,fs2,os2)) =
conv ns (rho1,vs1,fs1,os1) (rho2,vs2,fs2,os2)
instance Convertible Val where
conv ns u v | u == v = True
| otherwise =
let j = fresh (u,v)
in case (u,v) of
(Ter (Lam x a u) e,Ter (Lam x' a' u') e') ->
let v@(VVar n _) = mkVarNice ns x (eval e a)
in conv (n:ns) (eval (upd (x,v) e) u) (eval (upd (x',v) e') u')
(Ter (Lam x a u) e,u') ->
let v@(VVar n _) = mkVarNice ns x (eval e a)
in conv (n:ns) (eval (upd (x,v) e) u) (app u' v)
(u',Ter (Lam x a u) e) ->
let v@(VVar n _) = mkVarNice ns x (eval e a)
in conv (n:ns) (app u' v) (eval (upd (x,v) e) u)
(Ter (Split _ p _ _) e,Ter (Split _ p' _ _) e') -> (p == p') && conv ns e e'
(Ter (Sum p _ _) e,Ter (Sum p' _ _) e') -> (p == p') && conv ns e e'
(Ter (HSum p _ _) e,Ter (HSum p' _ _) e') -> (p == p') && conv ns e e'
(Ter (Undef p _) e,Ter (Undef p' _) e') -> p == p' && conv ns e e'
(Ter (Hole p) e,Ter (Hole p') e') -> p == p' && conv ns e e'
-- (Ter Hole{} e,_) -> True
-- (_,Ter Hole{} e') -> True
(VPi u v,VPi u' v') ->
let w@(VVar n _) = mkVarNice ns "X" u
in conv ns u u' && conv (n:ns) (app v w) (app v' w)
(VSigma u v,VSigma u' v') ->
let w@(VVar n _) = mkVarNice ns "X" u
in conv ns u u' && conv (n:ns) (app v w) (app v' w)
(VCon c us,VCon c' us') -> (c == c') && conv ns us us'
(VPCon c v us phis,VPCon c' v' us' phis') ->
(c == c') && conv ns (v,us,phis) (v',us',phis')
(VPair u v,VPair u' v') -> conv ns u u' && conv ns v v'
(VPair u v,w) -> conv ns u (fstVal w) && conv ns v (sndVal w)
(w,VPair u v) -> conv ns (fstVal w) u && conv ns (sndVal w) v
(VFst u,VFst u') -> conv ns u u'
(VSnd u,VSnd u') -> conv ns u u'
(VApp u v,VApp u' v') -> conv ns u u' && conv ns v v'
(VSplit u v,VSplit u' v') -> conv ns u u' && conv ns v v'
(VOpaque x _, VOpaque x' _) -> x == x'
(VVar x _, VVar x' _) -> x == x'
(VPathP a b c,VPathP a' b' c') -> conv ns a a' && conv ns b b' && conv ns c c'
(VPLam i a,VPLam i' a') -> conv ns (a `swap` (i,j)) (a' `swap` (i',j))
(VPLam i a,p') -> conv ns (a `swap` (i,j)) (p' @@ j)
(p,VPLam i' a') -> conv ns (p @@ j) (a' `swap` (i',j))
(VAppFormula u x,VAppFormula u' x') -> conv ns (u,x) (u',x')
(VComp a u ts,VComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
(VHComp a u ts,VHComp a' u' ts') -> conv ns (a,u,ts) (a',u',ts')
(VGlue v equivs,VGlue v' equivs') -> conv ns (v,equivs) (v',equivs')
(VGlueElem (VUnGlueElem b equivs) ts,g) -> conv ns (border b equivs,b) (ts,g)
(g,VGlueElem (VUnGlueElem b equivs) ts) -> conv ns (border b equivs,b) (ts,g)
(VGlueElem (VUnGlueElemU b _ equivs) ts,g) -> conv ns (border b equivs,b) (ts,g)
(g,VGlueElem (VUnGlueElemU b _ equivs) ts) -> conv ns (border b equivs,b) (ts,g)
(VGlueElem u us,VGlueElem u' us') -> conv ns (u,us) (u',us')
(VUnGlueElemU u _ _,VUnGlueElemU u' _ _) -> conv ns u u'
(VUnGlueElem u _,VUnGlueElem u' _) -> conv ns u u'
(VCompU u es,VCompU u' es') -> conv ns (u,es) (u',es')
(VIdPair v vs,VIdPair v' vs') -> conv ns (v,vs) (v',vs')
(VId a u v,VId a' u' v') -> conv ns (a,u,v) (a',u',v')
(VIdJ a u c d x p,VIdJ a' u' c' d' x' p') ->
conv ns [a,u,c,d,x,p] [a',u',c',d',x',p']
_ -> False
instance Convertible Ctxt where
conv _ _ _ = True
instance Convertible () where
conv _ _ _ = True
instance (Convertible a, Convertible b) => Convertible (a, b) where
conv ns (u, v) (u', v') = conv ns u u' && conv ns v v'
instance (Convertible a, Convertible b, Convertible c)
=> Convertible (a, b, c) where
conv ns (u, v, w) (u', v', w') = conv ns (u,(v,w)) (u',(v',w'))
instance (Convertible a,Convertible b,Convertible c,Convertible d)
=> Convertible (a,b,c,d) where
conv ns (u,v,w,x) (u',v',w',x') = conv ns (u,v,(w,x)) (u',v',(w',x'))
instance Convertible a => Convertible [a] where
conv ns us us' = length us == length us' &&
and [conv ns u u' | (u,u') <- zip us us']
instance Convertible a => Convertible (System a) where
conv ns ts ts' = keys ts == keys ts' &&
and (elems (intersectionWith (conv ns) ts ts'))
instance Convertible Formula where
conv _ phi psi = dnf phi == dnf psi
instance Convertible (Nameless a) where
conv _ _ _ = True
-------------------------------------------------------------------------------
-- | Normalization
class Normal a where
normal :: [String] -> a -> a
instance Normal Env where
normal ns (Env (rho,vs,fs,os)) = Env (normal ns (rho,vs,fs,os))
instance Normal Val where
normal ns v = case v of
VU -> VU
Ter (Lam x t u) e ->
let w = eval e t
v@(VVar n _) = mkVarNice ns x w
in VLam n (normal ns w) $ normal (n:ns) (eval (upd (x,v) e) u)
Ter t e -> Ter t (normal ns e)
VPi u v -> VPi (normal ns u) (normal ns v)
VSigma u v -> VSigma (normal ns u) (normal ns v)
VPair u v -> VPair (normal ns u) (normal ns v)
VCon n us -> VCon n (normal ns us)
VPCon n u us phis -> VPCon n (normal ns u) (normal ns us) phis
VPathP a u0 u1 -> VPathP (normal ns a) (normal ns u0) (normal ns u1)
VPLam i u -> VPLam i (normal ns u)
VComp u v vs -> VComp (normal ns u) (normal ns v) (normal ns vs)
VHComp u v vs -> VHComp (normal ns u) (normal ns v) (normal ns vs)
VGlue u equivs -> VGlue (normal ns u) (normal ns equivs)
VGlueElem u us -> VGlueElem (normal ns u) (normal ns us)
VUnGlueElem u us -> VUnGlueElem (normal ns u) (normal ns us)
VUnGlueElemU e u us -> VUnGlueElemU (normal ns e) (normal ns u) (normal ns us)
VCompU a ts -> VCompU (normal ns a) (normal ns ts)
VVar x t -> VVar x (normal ns t)
VFst t -> VFst (normal ns t)
VSnd t -> VSnd (normal ns t)
VSplit u t -> VSplit (normal ns u) (normal ns t)
VApp u v -> VApp (normal ns u) (normal ns v)
VAppFormula u phi -> VAppFormula (normal ns u) (normal ns phi)
VId a u v -> VId (normal ns a) (normal ns u) (normal ns v)
VIdPair u us -> VIdPair (normal ns u) (normal ns us)
VIdJ a u c d x p -> VIdJ (normal ns a) (normal ns u) (normal ns c)
(normal ns d) (normal ns x) (normal ns p)
_ -> v
instance Normal (Nameless a) where
normal _ = id
instance Normal Ctxt where
normal _ = id
instance Normal Formula where
normal _ = fromDNF . dnf
instance Normal a => Normal (Map k a) where
normal ns = Map.map (normal ns)
instance (Normal a,Normal b) => Normal (a,b) where
normal ns (u,v) = (normal ns u,normal ns v)
instance (Normal a,Normal b,Normal c) => Normal (a,b,c) where
normal ns (u,v,w) = (normal ns u,normal ns v,normal ns w)
instance (Normal a,Normal b,Normal c,Normal d) => Normal (a,b,c,d) where
normal ns (u,v,w,x) =